The partition dimension of origami graphs and its barbell
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2025.9.2.4
References
Amrullah, The partition dimension for a subdivision of a homogeneous firecracker, Electron. J. Graph Theory Appl., 8 (2) (2020), 445-455.
Asmiati, A. Rachmawati, D. E, Nurvazly, N. Hamzah. The partition dimension of daisy graphs and its barbell, Sci. Technol. Indones., 10 (2) (2025), 313-319.
R. Bhatti, M. K. Jamil, M. Azeem, P. Poojary, Partition dimension of generalized hexagonal cellular networks and its application, IEEE Access., 12 (2024).
G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Math., 59 (2000), 45--54.
Y. Hafidh, E. T. Baskoro. Partition dimension of trees- palm approach, Electron. J. Graph Theory Appl., 12 (2) (2024), 265–272.
A. Irawan, Asmiati, L. Zakaria, K. Muludi. The locating-chromatic number of origami graphs, Algorithms, 14 (2021), 167.
D. Kuziak, E. Maritz, T. Vetrik, I. G. Yero. The edge partition dimension of graphs, Discrete Math. Lett., 12 (2023), 34-–39.
A. D. Nabila, Hasmawati, M. Nur, Dimensi partisi hasil amalgamasi-sisi pada graf siklus, J. Mat. Stat. Komput., 20 (2023), 65--74.
M. Ridwan, H. Assiyatun, E. T. Baskoro, The dominating partition dimension and locating chromatic number of graphs, Electron. J. Graph Theory Appl., 11 (2) (2023), 455–465.
Y. A. Rumarhobo, S. Suwilo, Mardiningsih, Dimensi partisi pada graf payung, J. Math. Educ. Sci., 9 (2024), 1--10.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.











