On interior Roman domination in graphs
Abstract
Let G = (V(G), E(G)) be a non-complete graph and let ϕ:V(G)→{0,1,2} be a function on G. For each i ∈ {0, 1, 2}, let Vi={w ∈ V(G): ϕ(w)=i}. A function ϕ=(V0, V1, V2) is an interior Roman dominating function (InRDF) on G if (i) for every v ∈ V0, there exists u ∈ V2 such that uv ∈ E(G), and (ii) either V1=V(G) or for every z ∈ V2, z is an interior vertex of G. Denoted by ωGInR(ϕ)=∑u ∈ V(G) ϕ(u) is the weight of InRDF ϕ; and the minimum weight of an InRDF ϕ on G, denoted by γInR(G), is called the interior Roman domination number. Any InRDF ϕ on graph G with ωGInR(ϕ)= γInR(G) is called a γInR -function on G. In this paper, we introduce a new parameter of a Roman dominating function in graphs and discuss some important combinatorial properties.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2025.9.2.3
References
B.S. Anand, J.A. Dayap, L.C. Casinillo, R. Pepper, and R.S. Nair, On distance k-domination number of graphs under product operations, Gulf J. Math., 19 (2025), 117--124.
L.F. Casinillo, A note on fibonacci and lucas number of domination in path, Electron. J. Graph Theory Appl., 6 (2018), 317--325.
L.F. Casinillo, New counting formula for dominating sets in path and cycle graphs, J. Fundam. Math. and Appl., 3 (2020), 170--177.
L.F. Casinillo, Odd and even repetition sequences of independent domination number, Notes Number Theory Discrete Math., 26 (2020), 8–20.
L.F. Casinillo, A closer look at a path domination number in grid graphs, J. Fundam. Math. and Appl., 6 (2023), 18--26.
G. Chartrand, Lesniak L., and P. Zhang, Graphs and Digraphs, CRC Press, 2016.
M. Chellali, T.W. Haynes, and S.T. Hedetniemi, Roman and total domination, Quaestiones Math., 38 (2015), 749--757.
E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Marcel Dekker, New York, 278 (2004), 11--22.
T.W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of domination in graphs, CRC press, 2013.
N. Jafari Rad and A. Poureidi, On hop roman domination in trees, Commun. Comb. Optim., 4 (2019), 201--208.
A.A. Kinsley and C.C Selvaraj, A study on interior domination in graphs, IOSR J. Math., 12 (2016), 55--59.
R. L. Pushpam and S. Padmapriea, Restrained roman domination in graphs, Trans. Comb., 4 (2015), 1--17.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.











