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Abstract

A tree T (V,E) is graceful if there exists an injective function f from the vertex set V (T ) into
the set {0, 1, 2, ..., |V | − 1} which induces a bijective function f ′ from the edge set E(T ) onto
the set {1, 2, ..., |E|}, with f ′(uv) = |f(u) − f(v)| for every edge {u, v} ∈ E. Motivated by
the conjecture of Alexander Rosa (see [1]) saying that all trees are graceful, a lot of works have
addressed gracefulness of some trees. In this paper we show that some uniform trees are graceful.
This results will extend the list of graceful trees.
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1. Introduction

Let G(V,E) be a graph of |V (G)| vertices and |E(G)| edges. Graphs labelling is a notorious
topic in graph theory. This is not because of its interesting combinatorial property of graphs la-
belling but also because of applications side such as X-ray crystallography, coding theory, circuit
design, or astronomy (see [5]).

In year 1967, Alexander Rosa introduced β labelling or β−valuations which was popularized
by Solomon W. Golomb as graceful labelling. A graceful labelling for the graph G(V,E) is an
injective function f from the vertex set V (G) into the set {0, 1, 2, ..., |E(G)|} which induces edge
labels |f(u)− f(v)| for all {u, v} ∈ E(G) which are all distinct. A graph which admits a graceful
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labelling is said to be graceful. Not too many classes of trees are yet known to be graceful (see
[1]). Erdös in an unpublished paper said that most graphs are not graceful, but graphs with some
regularity are graceful (see [1]). Especially with trees, the conjecture of Alexander Rosa (see [1])
saying that all trees are graceful, has motivated many published papers regarding graceful trees.
There are many classes of trees known to be graceful. Here we construct some classes of trees
which are then proven to be graceful.

2. Results

In this section we will observe some classes of trees which then are known to be graceful.

Uniform Caterpillars

Denote by Px the path of x vertices. One end vertex of a path will be called the head and the
other one end will be called the back of the path. A uniform (q, r)-caterpillar or shortly (q, r)-
caterpillar is a tree which is obtained by appending r leaves to each vertex of Pq except the back
which is appended by r+ 1 leaves. The path Pq will be called the backbone of (q, r)-caterpillar. It
was proved in [2] that for any positive integers q and r, (q, r)-caterpillar is graceful. Furthermore,
it is clear that the number of vertices in a uniform (q, r)-caterpillar is equal to q(r+ 1) + 1. A tree
which is constructed from p copies of (q, r)-caterpillars and a path Pp by identifying the head of
each (q, r)-caterpillar to exactly one vertex of Pp is called a uniform super (p, q, r)-caterpillar, and
is denoted by SC(p, q, r). It is easy to check that the number of vertices of SC(p, q, r) is equal to
p(1 + q + qr).

The path Pp is called the spine of SC(p, q, r) (see [6]). For r = 0, SC(p, q, 0) is proved to be
graceful in [6].

Without loss of generality, we count the vertices of the spine Pp from one end point to the other
one (from left to right) from 1 until p. Furthermore, we assign a number to each (q, r)-caterpillar
corresponds to the number of vertex of Pp on which the head of the caterpillar is identified. Denote
each vertex of SC(p, q, r) by vi,j,k with i := 1, 2, ..., r, r + 1, j := 0, 1, 2, ..., q, k := 1, 2, ..., p,
where vr+1,j,k are for the vertices in the backbone of the kth (q, r)-caterpillar which is at distant j
from the spine Pp, and vi,j,k, with j > 0, is the leaf of the kth (q, r)-caterpillar which is adjacent
with vertex vr+1,j−1,k.

Theorem 2.1. For every positive integers p, q, and r, the uniform super caterpillar SC(p, q, r) is
graceful.

Proof. Let T (V,E) := C(p, q, r) and s := 1+ q+ qr. Here we have |V | := ps and |E| := ps− 1.
Consider the following function f from V into {0, 1, 2, . . . , ps − 1} and f ′ is a function from E
into {1, 2, . . . , ps− 1} such that f ′({u, v}) = |f(u)− f(u)|, for all {u, v} ∈ E.
For i = 1, 2, ..., r, r + 1, j = 0, 1, 2, ..., q, k = 1, 2, ..., p, we define the function f as follows.
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Figure 1. Graph of SC(p, q, r)

f(vi,j,k) =



1
2
(k − 1)s for i = r + 1, j = 0, k odd,

1
2
(2p− k)s for i = r + 1, j = 0, k even,
i+ 1

2
[(k − 1)s+ (j − 2)(r + 1)] for j 6= 0 even, k odd,

1
2
[(2p− (k − 1))s− (j − 1)(r + 1)]− i for j odd, k odd,
i+ 1

2
[(2p− k)s+ (j − 2)(r + 1)] for j 6= 0 even, k even,

1
2
[ks− (j − 1)(r + 1)]− i for, j odd, k even.

(1)
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This function induces the function f ′ as follows.

f ′({vr+1,0,k, vr+1,0,k+1}) = |(p− k)s|, (2)
f ′({vi,j,k, vr+1,j−1,k}) = |(p− (k − 1))s− i− (j − 1)(r + 1)|,

for j > 0 and k odd (3)
f ′({vi,j,k, vr+1,j−1,k}) = |(p− k)s+ i+ (j − 1)(r + 1)|,

for j > 0 and k even (4)

Now we want to show that f is injective by showing that the range of f is a subset of {0, 1, 2, . . . , ps−
1}, and the cardinality of the range of f is equal to ps− 1.

Moreover, we will show that the range of f ′ is equal to the set of {1, 2, . . . , ps − 1}, and
therefore f ′ is bijective.

Let us denote the ranges of f in Eq. (1) as V ′1 , V ′2 , V ′3 , and V ′4 , for the conditions of the pairs
(j, k): (even, odd),(odd, odd),(even, even) and (odd, even), respectively. Thus for the whole range
of f is V ′ := V ′1 ∪V ′2 ∪V ′3 ∪V ′4 . Now we will describe V ′i , 1 ≤ i ≤ 4. To this end, we will see each
of the four cases of the pairs of (p, q).

For the sake of space, we will present the proof only for the case (p, q)=(even, even). The proof
for other cases is similar.
For case (p, q) = (even, even) we have

V ′1 = {0, . . . , s−1
2
} ∪ {s, . . . , s+ s−1

2
} ∪ {2s, . . . , 2s+ s−1

2
} ∪ . . .

∪{ (p−2)s
2

, . . . , (p−2)s
s

+ s−1
2
}

V ′2 = { (p+2)s
2
− s−1

2
, . . . , (p+2)s

2
− 1} ∪ { (p+4)s

2
− s−1

2
, . . . , (p+4)s

2
− 1} ∪ . . .

∪{ps− s−1
2
, . . . , ps− 1}

V ′3 = {ps
2
, . . . , ps

2
+ s−1

2
} ∪ { (p+2)s

2
, . . . , (p+2)s

2
+ s−1

2
}

∪ . . . ∪ {(p− 1)s, . . . , (p− 1)s+ s−1
2
}

V ′4 = {s− s−1
2
, . . . , s− 1} ∪ {2s− s−1

2
, . . . , 2s− 1} ∪ {3s− s−1

2
, . . . , 3s− 1}

∪ . . . ∪ {ps
2
− s−1

2
, . . . , ps

2
− 1}

(5)

Based on the above observation we get

V ′ = V ′1 ∪ V ′2 ∪ V ′3 ∪ V ′4
= {0, . . . , s−1

2
} ∪ {s− s−1

2
, . . . , s− 1} ∪ {s, . . . , s+ s−1

2
}

∪{2s− s−1
2
, . . . , 2s− 1} ∪ . . . ∪ {(p− 1)s, . . . , (p− 1)s+ s−1

2
}

∪{ps− s−1
2
, . . . , ps− 1}

= {0, 1, 2, . . . , ps− 1}.

(6)

For this case we conclude that f is an injection. By doing a similar way, we may conclude that
f is an injective function.

126



www.ijc.or.id

Some methods for constructing some classes of graceful... | I N. Suparta and I D.M.A. Ariawan

Next we will show that the induced function f ′ is a bijective function. We will distinguish into
two cases based on the kind of edges: {vr+1,0,k, vr+1,0,k+1} and {vi,j,k, vr+1,j−1,k}.

i). For edges of the form {vr+1,0,k, vr+1,0,k+1}, 1 ≤ k < p. Here we have f ′(vr+1,0,k, vr+1,0,k+1) =
|f(vr+1,0,k)− f(vr+1,0,k+1)|.
For k odd we have

f ′({vr+1,0,k, vr+1,0,k+1}) = |1
2
(k − 1)s− 1

2
(2p− (k + 1))s|

= |ks− ps|
= |(p− k)s|.

For k even we have

f ′({vr+1,0,k, vr+1,0,k+1}) = |1
2
(2p− k)s− 1

2
((k + 1)− 1)s|

= |ps− ks|
= |(p− k)s|.

ii). For edges of the form {vi,j,k, vr+1,j−1,k}. We will divide into cases: (k, j) = (odd, odd),
(k, j) = (odd, even), (k, j) = (even, odd), and (k, j) = (even, even).

a) Case (k, j) = (odd, odd).
Here we have

f ′({vi,j,k, vr+1,j−1,k}) = |(1
2
((2p− (k − 1))s− (j − 1)(r + 1))− i)−

(r + 1 + 1
2
((k − 1)s+ ((j − 1)− 2)(r + 1))|

= |(1
2
((2p− (k − 1))s− (j − 1)(r + 1))− i)−

1
2
((k − 1)s+ (j − 1)(r + 1))|

= |1
2
(2p− 2(k − 1))s− i− 1

2
(2(j − 1)(r + 1))|

= |(p− (k − 1))s− i− (j − 1)(r + 1)|.
b) Case (k, j) = (odd, even). In this case we have

f ′({vi,j,k, vr+1,j−1,k}) = |i+ 1
2
((k − 1)s+ (j − 2)(r + 1))−

(1
2
((2p− (k − 1))s− ((j − 1)− 1)(r + 1))− (r + 1))|

= |i+ 1
2
((k − 1)s− (j − 2)(r + 1))−

1
2
((2p− (k − 1))s− j(r + 1))|

= |i+ 1
2
(2(k − 1)− 2p)s+ 1

2
(2j − 2)(r + 1)|

= |(p− (k − 1))s− i− (j − 1)(r + 1)|.

Thus, for Cases (k, j) = (odd, odd) and (k, j) = (odd, even) we have that f ′(vi,j,k, vr+1,j−1,k) =
|(p− (k − 1))s− i− (j − 1)(r + 1)|.
By doing a similar algebraic process we will get f ′(vr+1,0,k, vr+1,0,k+1) = |(p − k)s + i + (j −
1)(r + 1)| for the cases (k, j) = (even, odd) and (k, j) = (even, even).

Now let the image of f ′({vr+1,0,k, vr+1,0,k+1}) is E ′1; of f ′({vi,j,k, vr+1,j−1,k}), for the cases
(k, j) = (odd, odd) and (k, j) = (odd, even), is E ′2; and the image of f ′({vi,j,k, vr+1,j−1,k}), for
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the cases (k, j) = (even, odd) and (k, j) = (even, even), is E ′3. Furthermore, let f ′(E) = E ′.
Thus E ′ = E ′1 ∪E ′2 ∪E ′3. We then have that E ′1 = {s, 2s, . . . , (p− 1)s}. While for E ′2 and E ′3 we
will see in two cases: p odd and p even.
For p odd we have

E ′2 = {1, 2, . . . , s− 1} ∪ {2s+ 1, 2s+ 2, . . . , 3s− 1} ∪ . . .
∪{(p− 1)s+ 1, (p− 1)s+ 2, . . . , ps− 1}, and

E ′3 = {s+ 1, s+ 2, . . . , 2s− 1} ∪ {3s+ 1, 3s+ 2, . . . , 4s− 1} ∪
. . . ∪ {(p− 2)s+ 1, (p− 2)s+ 2, . . . , (p− 1)s− 1}.

For case p odd we get that E ′ = E ′1 ∪ E ′2 ∪ E ′3 = {1, 2, . . . , ps− 1}.
For p even we have

E ′2 = {s+ 1, s+ 2, . . . , 2s− 1} ∪ {3s+ 1, 3s+ 2, . . . , 4s− 1} ∪
. . . ∪ {(p− 1)s+ 1, (p− 1)s+ 2, . . . , (p− 1)s− 1}, and

E ′3 = {1, 2, . . . , s− 1} ∪ {2s+ 1, 2s+ 2, . . . , 3s− 1} ∪ . . .
∪{(p− 2)s+ 1, (p− 2)s+ 2, . . . , (p− 1)s− 1}.

So, for case p even, again we obtain that E ′ = E ′1∪E ′2∪E ′3 = {1, 2, . . . , ps−1}. Thus, in all cases
of p, we can conclude that f ′(E) = E ′ = {1, 2, . . . , ps − 1}. Since |E| = |f ′(E)| = ps − 1, we
may immediately infer that the function f ′ is bijective from E onto {1, 2, . . . , ps − 1}, and hence
the function f is a graceful labelling.

Uniform Super Lobster Tree

Here we will observe another class of trees which are graceful. These trees are called super
uniform lobsters.

Consider a (q, r)-caterpillar. If we append s leaves to each leaf of this (q, r)-caterpillar, except
one leaf which is adjacent to the back, then we obtain a new tree which is called a uniform (q, r, s)-
lobster. The leaf of the (q, r)-caterpillar which is not appended by s leaves will be called the tail
of the uniform (q, r, s)-lobster. The uniform (q, r, s)-lobster is called 2-distant tree in [2]. The
number of vertices in a uniform (q, r, s)-lobster is equal to q(rs + r + 1) + 1. We will call again
the path Pq as the backbone of the uniform (q, r, s)-lobster.
For a positif integer p > 1, take p copies of uniform (q, r, s)-lobster and then identify their all
tails. The resulting tree is called a uniform (p, q, r, s)-super lobster or shortly a (p, q, r, s)-super
lobster, which is denoted by SL(p, q, r, s). For r = 0, (p, q, r, 0)-super lobster in [4] is called super
caterpillar, and was proved to be graceful. Later we will show that SL(p, q, r, s) is graceful.

First, we name the vertices of SL(p, q, r, s) with vi,j,k and with vhi,j,k where i = 1, 2, ..., q,
j = 0, 1, 2, . . . , r, k = 1, 2, . . . , p, h = 1, 2, . . . , s, with the following details:
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vi,0,k for the vertex which is on the kth backbone and at distant i from the center v0,0,0;
vi,j,k, j 6= 0, for the vertex which is adjacent to vi,0,k; and
vhi,j,k for the leaf which is adjacent to vi,j,k.

Figure 2. Diagram of SL(p, q, r, s)

Let G(V,E) := SL(p, q, r, s) and m = r(s+1)+1. It is easy to see that |V | = pqm+1. Now
we define a function f from V into {0, 1, 2, . . . , pqm} as the following.
For 1 ≤ k ≤ p, we define
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f(vi,j,k) =



0 if i = j = k = 0,
pqm− (i−1)m

2
− (k − 1)qm, if j = 0 and i odd,

im
2
+ (k − 1)qm, if j = 0 and i even,

(i−1)m
2

+ (j − 1)(s+ 1) + (k − 1)qm+ 1, if j > 0 and i odd,
pqm− (i−2)m

2
− j(s+ 1)− (k − 1)qm, if j > 0 and i even,

(7)

and for 1 ≤ k ≤ p and 0 < j ≤ r we define

f(vhi,j,k) =

{
pqm− (i−1)m

2
− (j − 1)(s+ 1)− (k − 1)qm− h, if i odd,

(i−2)m
2

+ (j − 1)(s+ 1) + (k − 1)qm+ h+ 1, if i even.
(8)

Theorem 2.2. For all positive integers p, q, r, and s, super lobster graph SL(p, q, r, s) is graceful.

Proof. Consider the function defined in Eq. (7) and Eq. (8). Let V ′1 , V
′
2 , V

′
3 , V

′
4 , V

′
5 , V

′
6 , V

′
7 , stand

for the ranges of f for conditions (i, j, k) = (0, 0, 0); (i odd, j = 0, k); (i even, j = 0, k); (i
odd, j > 0, k); (i even, j > 0, k); (i odd, j, k); and (i even, j, k); respectively. Furthermore, let
V ′ = V ′1 ∪ V ′2 ∪ V ′3 ∪ V ′4 ∪ V ′5 ∪ V ′6 ∪ V ′7 .

First we will prove that f is an injection.
We partition into two cases on q: (i) q is even, and (ii) q is odd.
(i) Case q is even. Here we have

A = V ′3 ∪ V ′4 ∪ V ′7
= {1, 2, . . . , qm

2
} ∪ {qm+ 1, . . . , qm+ qm

2
} ∪ {2qm+ 1, . . . , 2qm+ qm

2
} ∪ . . .

∪{(p− 1)qm+ 1, . . . , (p− 1)qm+ qm
2
}, and

B = V ′2 ∪ V ′5 ∪ V ′6
= { qm

2
+ 1, . . . , qm} ∪ { qm

2
+ qm+ 1, . . . , 2qm} ∪ { qm

2
+ 2qm+ 1, . . . , 3qm} ∪ . . .

∪{(p− 1)qm+ qm
2
+ 1, . . . , pqm}.

By doing some algebraic calculations, we obtain that V ′ = V ′1 ∪ A ∪B = {0, 1, 2, . . . , pqm}.

(ii) Case q is odd.
Let A = V ′3 ∪ V ′4 ∪ V ′7 . In this case we will calculate A into two phases with respect to q: for

0 < i < q, and then for i = q.
Let A1 = V ′3 ∪ V ′4 ∪ V ′7 for 0 < i < q, and A2 = V ′3 ∪ V ′4 ∪ V ′7 for i = q. Thus the total
V ′3 ∪ V ′4 ∪ V ′7 = A1 ∪ A2. Here we have that

A1 = {1, . . . , (q−1)m
2
} ∪ {qm+ 1, . . . , qm+ (q−1)m

2
} ∪ {2qm+ 1, . . . , 2qm+ (q−1)m

2
}

∪ . . . ∪ {(p− 1)qm+ 1, . . . , (p− 1)qm+ (q−1)m
2
}, and

A2 = { (q−1)m
2

+ 1, (q−1)m
2

+ (s+ 1) + 1, . . . , (q+1)m
2
− (s+ 1)}

∪{qm+ (q−1)m
2

+ 1, qm+ (q−1)m
2

+ (s+ 1) + 1, . . . , qm+ (q+1)m
2
− (s+ 1)}

∪ . . . ∪ {(p− 1)qm+ (q−1)m
2

+ 1, (p− 1)qm+ (q−1)m
2

+ (s+ 1) + 1, . . . ,

(p− 1)qm+ (q+1)m
2
− (s+ 1)}.
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Furthermore, let B = V ′2 ∪ V ′5 ∪ V ′6 . As we did above, here again we will calculate B into two
phases with respect to q: for 0 < i < q, and then for i = q.
Let B1 = V ′2 ∪ V ′5 ∪ V ′6 for 0 < i < q, and B2 = V ′2 ∪ V ′5 ∪ V ′6 for i = q. Thus the total
V ′2 ∪ V ′5 ∪ V ′6 = B1 ∪B2. We obtain the following result.

B1 = { (q+1)m
2

+ 1, . . . , qm} ∪ {qm+ (q+1)m
2

+ 1, . . . , 2qm}∪
{2qm+ (q+1)m

2
+ 1, . . . , 3qm} ∪ . . .∪

{(p− 1)qm+ (q+1)m
2

+ 1, . . . , pqm}, and
B2 =

⋃p
k=1 ( {(k − 1)qm+ (q−1)m

2
+ 2, . . . , (k − 1)qm+ (q−1)m

2
+ (s+ 1)}

∪{(k − 1)qm+ (q−1)m
2

+ (s+ 1) + 2, . . . , (k − 1)qm+ (q−1)m
2

+ 2(s+ 1)}
∪ . . . ∪ {(k − 1)qm+ (q+1)m

2
− (s+ 1) + 1, . . . , (k − 1)qm+ (q+1)m

2
− 1}

∪(k − 1)qm+ (q+1)m
2
} ) .

Thus we have

V ′ = V ′1 ∪ A1 ∪ A2 ∪B1 ∪B2

{0} ∪ {1, . . . , (q−1)m
2

, (q−1)m
2

+ 1, . . . , (q+1)m
2

, (q+1)m
2

+ 1, . . . , qm}
∪{qm+ 1, . . . , qm+ (q−1)m

2
, qm+ (q−1)m

2
+ 1, . . . , qm+ (q+1)m

2
,

qm+ (q+1)m
2

+ 1, . . . , 2qm} ∪ . . . ∪ {(p− 1)qm+ 1, . . . , (p− 1)qm+ (q−1)m
2

,

(p− 1)qm+ (q−1)m
2

+ 1, . . . , (p− 1)qm+ (q+1)m
2

, (p− 1)qm+ (q+1)m
2

+ 1, . . . , pqm}
= {0, 1, 2, . . . , pqm}.

We see that for every case we obtain that V ′1∪V ′2∪V ′3∪V ′4∪V ′5∪V ′6∪V ′7 = {0, 1, 2, . . . , pqm}. Thus
the function f is not only injective but also bijective. We will leave the proof that the function f ′

is bijective from E onto {1, 2, . . . , pqm}.

Uniform Distant Trees

The third class of trees we want to show to be graceful is the class of uniform distant trees. A
tree in which all internal vertices have degrees r + 1 except one internal vertex, is called an full
r-ary tree. the vertex of degrees r will be called the root of the tree. A uniform full r-ary tree is a
full r-ary tree in which all of its leaves are at the same level, say q, and is denoted by T r

q . A tree
which is obtained from p copies of T r

q and a path of p vertices, Pp, by identifying each vertex of
Pp with exactly the root of each T r

q is called a uniform (p, q, r)-distant tree and will be denoted by
D(p, q, r). In [6] it was proved that D(p, q, 1) is graceful. Here we extend this result for r > 1.
It is easy to see that the order of T r

q is rq+1−1
r−1 , and hence the order of D(p, q, r) is ps with s =

rq+1−1
r−1 .

Now we want to name vertices of D(p, q, r) to facilitate the definition of a function from the
set of vertices to the set {0, 1, 2, ..., ps− 1}. First we name p vertices of the path Pp from one end
to the other by 1 up until p. If the root of the tree T r

q is identified with the kth vertex of the path
Pp., then we call the tree as the kth tree in Pp. We name vertices as vij ,j,k which has the following
details:
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i) j = 0, 1, . . . , q for referring the distance of the vertex from the path Pp.
ii) i = 1, 2, . . . , rj for referring the order of vertices at level j in each T r

q .
iii) k = 1, 2, . . . , p indicates that the vertex is in the kth tree T r

q .

Figure 3. Diagram of D(p, q, r)

For labelling vertices in D(p, q, r) we define a function fn from {0, 1, 2, . . . , ps − 1} with
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n = 1, 2, . . . , q as follows.

f1(v1,0,1) = 0, then let n = 1, 2, . . . , q.
For k = 1 we will see two cases: 1 ≤ j < n and j = n.
For case 1 ≤ j < n, we define

fn(vi,j,k) =

{
fn−1(vi,j,k) + rn (i−1)

rj
, if j even and i = 1, 2, . . . , rj,

fn−1(vi,j,k) + rn(p− i−1
rj

), if j odd and i = 1, 2, . . . , rj.
(9)

For j = n let m = 1, 2, . . . , rn−1 and i = 1 + r(m− 1), . . . , r + r(m− 1). Here we define

fn(vi,n,k) = fn(vrn−1−m+1,n−1,k) + (−1)n−1((rm− i+ 1) + (p− 1)sn), (10)

with sn = rn+1−1
r−1 .

For 1 < k ≤ p, 0 ≤ j ≤ q, and 1 ≤ i ≤ rj, we define

fn(vi,j,k) =

{
fn(vi,j,1) + (−1)j(k−1

2
)sn, if k odd

fn(vi,j,1) + (−1)j(p− k
2
)sn, if k even.

(11)

Theorem 2.3. For all positive integers p, q, and r ≥ 2, the graph D(p, q, r) is graceful.

Proof. Let G(V,E) be the graph D(p, q, r). Consider the function f as defined in Eqs. 9, 10, and
11 above. We define a function f ′ from E onto {1, 2, . . . , ps−1} such that for every edge uv ∈ E,
f ′(uv) = |f(u) − f(v)|. Next we will show that f and f ′ are injective and bijective, respectively.
First we want to show that the function f is injective. Let the ranges of f eqs. 9, 10, and 11 be
V ′1 , V

′
2 , and V ′3 respectively. Thus the total range of f is V ′ := V ′1 ∪ V ′2 ∪ V ′3 . Consider now the

cases of p.
First, assume that p is even. For the case k odd, j even, or the case k even, j odd, let A :=
V ′1 ∪ V ′2 ∪ V ′3 . Then we have that

A = {0, 1, . . . , s− 1} ∪ {s, s+ 1, . . . , 2s− 1} ∪ {2s, 2s+ 1, . . . , 3s− 1}
∪{3s, 3s+ 1, . . . , 4s− 1} ∪ . . . ∪ {(p

2
− 1)s, (p

2
− 1)s+ 1, . . . , ps

2
− 1}.

Moreover, for the case k odd, j odd, or the case k even, j even, let B := V ′1 ∪ V ′2 ∪ V ′3 . Then we
get

B = {ps
2
, ps

2
+ 1, . . . , (p

2
+ 1)s− 1} ∪ {(p

2
+ 1)s, (p

2
+ 1)s+ 1, . . . , (p

2
+ 2)s− 1}∪

{(p
2
+ 2)s, (p

2
+ 2)s+ 1, . . . , (p

2
+ 3)s− 1} ∪ . . .∪

{(p− 1)s, (p− 1)s+ 1, . . . , ps− 1}.
Thus V ′ = A ∪B = {0, 1, 2, . . . , ps− 1}.
Secondly, consider the case p odd. Here, we will partition into case 1 ≤ k < p and case k = p.
Let V ′1 ∪ V ′2 ∪ V ′3 = A ∪B ∪ C.
For the case k odd, j even, or the case k even, j odd, let A := V ′1 ∪ V ′2 ∪ V ′3 . Then we have that
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A = {0, 1, . . . , s− 1} ∪ {s, s+ 1, . . . , 2s− 1} ∪ {2s, 2s+ 1, . . . , 3s− 1}
∪{3s, 3s+ 1, . . . , 4s− 1} ∪ . . . ∪ {(p−3

2
)s, (p−3

2
)s+ 1, . . . , (p−1

2
)s− 1}.

Then, for the case k odd, j odd, or the case k even, j even, let B := V ′1 ∪ V ′2 ∪ V ′3 . Then we get

B = { (p+1)s
2

, (p+1)s
2

+ 1, . . . , (p+3)s
2
− 1} ∪ { (p+3)s

2
, (p+3)s

2
+ 1, . . . , (p+5)s

2
− 1}∪

{ (p+5)s
2

, (p+5)s
2

+ 1, . . . , (p+7)s
2
− 1} ∪ . . . ∪ {(p− 1)s, (p− 1)s+ 1, . . . , ps− 1}.

For k = p, we have C := V ′1 ∪ V ′2 ∪ V ′3 = {(p−1
2
)s, (p−1

2
)s+ 1, . . . (p+1

2
)s− 1}. Thus, by some

simple algebraic calculations we obtain V ′ = A ∪B ∪ C ={0, 1, 2, . . . , ps− 1}.
Since for every case we have that the total image of f is V ′ = {0, 1, 2, . . . , ps− 1}, and hence
|V ′| = |V |, then we may conclude that f is an injection (even a bijection).
Next, it remains to show that the induced function f ′ is a bijection.
a. First let us consider edges {v1,0,k, v1,0,k+1}. For n = 1, 2, . . . , q let sn = rn+1−1

r−1 . Here we have
f ′n({v1,0,k, v1,0,k+1}) = |fn(v1,0,k)− fn(v1,0,k+1)|. If k is odd we obtain
f ′n({v1,0,k, v1,0,k+1}) = |(fn(v1,0,1) + (−1)0(k−1

2
)sn)− (fn(v1,0,1) + (−1)0(p− k+1

2
)sn)|

= |(k−1
2
)sn − (p− k+1

2
)sn|

= |(p− k)sn|.
If k is even, we obtain
f ′n({v1,0,k, v1,0,k+1}) = |(fn(v1,0,1) + (−1)0(p− k

2
)sn)− (fn(v1,0,1) + (−1)0( (k+1)−1

2
)sn)|

= |(p− k
2
)sn − (k

2
)sn|

= |(p− k)sn|.
From here we have

f ′n({v1,0,k, v1,0,k+1}) = |(p− k)sn|. (12)

b. Now we consider the edges {vi,j,k, vt,j+1,k} with i = 1, 2, . . . , r and
t = ir − (r − 1), ir − (r − 2), . . . , ir. Here we have

f ′n({vi,j,k, vt,j+1,k}) = |fn(vi,j,k)− fn(vt,j+1,k)|. (13)

Let the images of f ′n in Eqs.(12) and (13) are E ′1 and E ′2 respectively, and the total image of f ′n is
E ′. Then, E ′ = E ′1 ∪ E ′2. Furthermore, we have that
E ′1 = {(p− 1)s, (p− 2)s, (p− 3)s, . . . , s}, and
E ′2 = {ps− 1, . . . , (p− 1)s+ 1} ∪ {(p− 1)s− 1, . . . , (p− 2)s+ 1}∪

{(p− 2)s− 1, . . . , (p− 3)s+ 1} ∪ . . . ∪ {s− 1, . . . , 1}.
Then E ′ = E ′1 ∪ E ′2 = {1, 2, . . . , ps− 1}. Thus, we can see that in any case we have that
|E| = ps− 1 = |E ′|. This means that the function f ′ is a bijection from E onto
E ′ = {1, 2, . . . , ps− 1}. We are done.

3. Conclusion

We should mention here that all uniform trees in this paper can indeed be proven by the method
introduced in [3], but in this paper we label the whole graph directly, whereas in [3] the labeling
proses is carried out part by part.

134



www.ijc.or.id

Some methods for constructing some classes of graceful... | I N. Suparta and I D.M.A. Ariawan

Acknowledgement

The authors thank to anonimous refrees for their useful notions.

References

[1] J.A. Gallian, A Dynamic Survey of Graph Labelling, Elect. J. Combinatorics, (2017).

[2] D. Morgan, All Lobsers with Perfect Matchings are Graceful, Electronic Notes in Discrete
Mathematics, Vol 11 (2002), 503–508.

[3] K.M. Koh, D.G. Rogers and T. Tan, Products of graceful trees, Discrete Mathematics, Vol.
31 (1980), 279–292.

[4] A. Munia, J. Maowa, S. Tania, M. Kaykobad,A New Class of Graceful Tree. International
Journal of Engineering Sciences and Research, Vol 5 (2014), 1112–1115.

[5] N. Ujwala, Applications of Graceful Graph, International Journal of Engineering Sciences
and Research Technology, Vol 4 (2015), pp.129–131.

[6] K. Wenger, Two Rosa-type Labeling of Uniform k-distant Trees and a New Class of Trees,
Honors Projects in Mathematics of Illnois Wesleyan University, (2015).

135


