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Abstract

For a simple graphG, a bijection f : V (G)→ [1, |V (G)|] is called as a local inclusive distance
antimagic (LIDA) labeling of G if w(u) 6= w(v) for every two adjacent vertices u, v ∈ V (G) with
w(u) =

∑
x∈N [u] f(x). A graph G is said to be local inclusive distance antimagic (LIDA) graph

if it admits a LIDA labeling. The function w induced by f also can be seen as a proper vertex
coloring of G. The local inclusive distance antimagic (LIDA) chromatic number of G, denoted
by χlida(G), is the minimum number of colors taken over all proper vertex colorings induced by
LIDA labelings of G. In this paper, we study a LIDA labeling of simple graph. We provide some
basic properties of LIDA labeling for any simple graphs. The LIDA chromatic number of certain
multipartite graphs, double stars, subdivision of graphs and join product of graphs withK1 are also
investigated. We present an upper bound for graphs obtained from subdivision of super edge-magic
total graphs. Furthermore, we present some new open problems.

Keywords: local distance antimagic labeling, local inclusive distance antimagic labeling, vertex coloring
Mathematics Subject Classification : 05C15, 05C78

1. Introduction

We assume that all graphs in this paper are undirected, simple, and finite. For any two integers
a and b, the notation [a, b] refers to the set of all integers from a to b, inclusive. A neighborhood
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of a vertex v, denoted by N(v), is a set consisting of every vertices adjacent to v. In addition, let
N [v] = N(v) ∪ {v}. Two vertices u, v are said to be false twins (or true twins) if N(u) = N(v)
(or N [u] = N [v]). A vertex v of a graph G is called as a dominating vertex in G if v is adjacent to
every other vertex in G.

Let f be a bijection function defined as f : V (G) ∪ E(G) → [1, |V (G)| + |E(G)|]. In 1970,
Kotzig and Rosa [13] introduced the definition that the function f is called as an edge-magic total
labeling if there exists a positive integer m such that for every xy ∈ E(G), f(x) +f(xy) +f(y) =
m. We say that the integerm as a magic constant of f . In case of {f(v) | v ∈ V (G)} = [1, |V (G)|],
then we said f as the super edge-magic total labeling [8]. The graph G which admits an (super)
edge-magic total labeling is called as (super) edge-magic graph. Some studies on (super) edge-
magic graphs can be seen in [6, 9, 10, 14, 20].

By using the similar idea of the edge-magic total labeling, Miller et al. [15] then defined the
distance magic labeling in 2003. This labeling is a bijective labeling f : V (G) → [1, |V (G)|]
such that every vertex v ∈ V (G) satisfies w(v) =

∑
u∈N(v) f(u) = m. We say w(v) as the weight

of vertex v with respect to labeling f . The graph G which admits a distance magic labeling is
called distance magic graph. Several graphs known to be distance magic are certain complete
multipartites graphs [2, 15], direct product of two graphs [1], and circulant graphs [3].

Later in 2013, Kamatchi and Arumugam [12] introduced the notion of distance antimagic
labeling by remove the magicness property of distance magic labeling. In this labeling version,
every two distinct vertices u and v in G satisfies w(u) 6= w(v). A graph G is called distance
antimagic graph if G admits a distance antimagic labeling. Some results on distance antimagic
labeling can be found in [4, 19, 21].

Furthermore, many authors also studied some variants of distance antimagic labeling. Dafik et
al. [5] introduced a labeling by using the similar idea of distance antimagic labeling, which is called
inclusive distance antimagic labeling. In this variant of distance antimagic labeling, the weight of
a vertex u is defined as w(u) = f(u) +

∑
x∈N(u) f(x). Simanjuntak et al. [18] then generalized

this concept and introduced D-antimagic labeling. For D ⊆ [0, diam(G)], a D-antimagic labeling
of a graph G is a bijection f : V (G) → [1, |V (G)|] such that w(v) =

∑
x∈ND(v) is distinct for

each vertex v, where ND(v) = {x ∈ V (G) | d(x, v) ∈ D}. Note that, the D-antimagic labeling
is equivalent to distance antimagic labeling and inclusive distance antimagic labeling if D = {1}
and D = {0, 1}, respectively.

Divya and Yamini [7] investigate another variant of distance antimagic labeling, namely local
distance antimagic labeling. In this version of distance antimagic labeling, every two adjacent
vertices u and v in G satisfies w(u) 6= w(v). Note that, any local antimagic labeling induces a
proper vertex coloring of G where the vertex v is assigned the color w(v). The local distance
antimagic chromatic number, denoted by χlda(G), is the minimum number of colors taken over
all colorings induced by local distance antimagic labelings of G. Handa et al. [11] obtained the
local distance antimagic labelings for several families of graphs including paths, cycles, wheels,
friendship graphs, complete multipartite graphs, and some special types of the caterpillars. The
local distance antimagic chromatic number of union of stars and double stars are studied in [17].
Meanwhile, graphs having local distance antimagic chromatic number of 2 have been investigated
by Priyadharsini and Nalliah [16].
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In this paper, we introduce the inclusive version of local distance antimagic labeling. Let f be
a bijection f : V (G) → [1, |V (G)|] and for v ∈ V (G), w(v) =

∑
x∈N [v] f(x) be a weight of v

of G with respect to f . The function f is called as a local inclusive distance antimagic (LIDA)
labeling of G if every two adjacent vertices u and v satisfies w(u) 6= w(v). If a graph G admits a
LIDA labeling, then G is said to be a local inclusive distance antimagic (LIDA) graph. Note that
the weight function w induced by f also can be seen as a proper vertex coloring of G. The local
inclusive distance antimagic (LIDA) chromatic number of G, denoted by χlida(G), is the minimum
number of colors taken over all proper vertex colorings induced by LIDA labelings of G. If a
graph G does not admit any LIDA labelings, then we say χlida(G) = ∞. Since the weight of two
adjacent vertices must be different, it is obvious that for a LIDA graph G, we have χlida(G) ≥ 2.

An illustration of LIDA labeling can be seen in Figure 1 below. The black numbers represent
the label of vertex, whereas the blue and red numbers represent the weight of vertex. We can see
that the labeling induced two colors of weight. Therefore, the LIDA chromatic number of the
graph is two.

Figure 1: LIDA labeling of P5.

In this paper, we study the LIDA labeling of simple graph. We provide some basic properties
of LIDA labeling, such as bounds on the parameter, sufficient conditions of two vertices having
distinct weights, and bounds of the weight of any given vertex in a graph. We also investigate the
LIDA chromatic number of several classes of graphs such as complete multipartite graph without
true twins, subdivided stars S(K1,n), and double stars Sn,n. Moreover, the LIDA chromatic number
of the join product graphs G + K1 and G + Kp are also determined. A small connection of super
edge-magic total graphs with LIDA chromatic number is also presented along with some open
problems.

2. Some Properties of LIDA Labeling

In this section, we provide some basic results of LIDA labeling. First, we present a sufficient
condition such that a graph does not admit any LIDA labelings.

Proposition 2.1. Let G be a graph having true twins. Then χlida(G) =∞.

Proof. Let u and v be a true twins in G and f be a bijection f : V (G) → [1, |V (G)|]. Since
N [u] = N [v], we have w(u) =

∑
x∈N [u] f(x) =

∑
x∈N [v] f(x) = w(v). Because u and v are

adjacent, we obtain that f is not a LIDA labeling.

Corollary 2.1. For n ≥ 2, let Kn be a complete graph. Then χlida(Kn) =∞.

Next, let us consider a LIDA graph G. Since LIDA labeling induces a proper vertex coloring,
it is obvious that we have the following proposition.
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Proposition 2.2. Let G be a LIDA graph. Then 2 ≤ χ(G) ≤ χlida(G) ≤ |V (G)|.

In the next proposition, we provide some properties of the weight of vertices induced by a
LIDA labeling of graph. In particular, we give some conditions such that two certain distinct
vertices have different weights.

Proposition 2.3. LetG be a LIDA graph. Let u and v be two distinct vertices inG. If w is a weight
induced by a LIDA labeling of G, then we have the following two conditions.

(a) If N [u] ⊂ N [v], then w(u) < w(v).
(b) If u and v are false twins, then w(u) 6= w(v).

Proof. Let f be a LIDA labeling of G which induces the weights w. If N [u] ⊂ N [v], then it is
easy to verify that

w(u) =
∑

x∈N [u]

f(x) <
∑

x∈N [v]

f(x) = w(v).

Meanwhile, if u and v are false twins, which means N(u) = N(v), then we have∑
x∈N(u)

f(x) =
∑

x∈N(v)

f(x).

Since f is a bijection, then we have f(u) 6= f(v). It implies that

w(u) = f(u) +
∑

x∈N(u)

f(x) = f(u) +
∑

x∈N(v)

f(x) 6= f(v) +
∑

x∈N(v)

f(x) = w(v).

Now let G be a LIDA graph. For v ∈ V (G), let w(v) be the weight of vertex v induced by a
LIDA labeling of G. In proposition below, we provide the possibility values of w(v) for any LIDA
labelings. In particular, we give the lower and upper bounds of w(v) for any vertices v of G.

Proposition 2.4. Let G be a LIDA graph of order n. Let f be a LIDA labeling of G which induces
the weighting function w(v) =

∑
x∈N [v] f(x) for v ∈ V (G). If deg(v) = d, then

1

2
(d+ 1)(d+ 2) ≤ w(v) ≤ 1

2
(d+ 1)(2n− d).

Furthermore, the lower bound is attained if and only if f(N [v]) = [1, d+ 1], and the upper bound
is attained if and only if f(N [v]) = [n− d, n].

Proof. Let v ∈ V (G). First, we prove the lower bound. Since [1, d + 1] is the set of d + 1
smallest values of [1, n], then the value of w(v) must be at least the sum of all values in [1, d+ 1],
i.e., w(v) ≥

∑d+1
i=1 i = 1

2
(d + 1)(d + 2). It is easy to see that the equality holds if and only if

f(N [v]) = [1, d+ 1].
Next, we prove the upper bound. Since [n − d, n] is the set of d + 1 greatest values of [1, n],

then the value of w(v) must not exceed the sum of all values in [n−d, n], i.e., w(v) ≤
∑n

i=n−d i =
1
2
(d + 1)(2n − d). It is easy to see that the equality holds if and only if f(N [v]) = [n − d, n].

Therefore, the proof is complete.
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3. LIDA Chromatic Number of Certain Classes of Graph

Now, this section will be divided in two subsections. The first subsection deals with several
classes of graphs, and the later deals with certain graph operations.

In Theorem 3.1, we present a class of graph G which has LIDA chromatic number equals to its
order.

Theorem 3.1. Let G be a complete multipartite graph which has at most 1 dominating vertex. We
have χlida(G) = |V (G)|.

Proof. Let G be a multipartite graph with a partition V (G) = ∪pi=1Vp for some p ∈ N such that
|V1|, |V2|, ..., |Vp| forms a non-decreasing sequence and n = |V (G)|. For every v ∈ V (G), let
w∗(v) =

∑
x∈V (G) f(x) − w(v). Since

∑
x∈V (G) f(x) is constant, it can be seen that w(v) is

distinct for every vertex v if and only if w∗(v) is distinct for every vertex v.
First, we will prove χlida(G) ≥ |V (G)|. Let f be a LIDA labeling of G. Since two vertices

in different partition are adjacent, then they must be colored different. Hence, we are left to check
vertices in the same partition. Consider a partition Vi ⊂ V (G) with |Vi| ≥ 2. It follows that
w∗(v) =

∑
x∈Vi

f(x)− f(v) for every v ∈ Vi. Since
∑

x∈Vi
f(x) is constant, then

f is injective =⇒ f(u) 6= f(v), for u, v ∈ Vi
=⇒

∑
x∈Vi

f(x)− f(u) 6=
∑
x∈Vi

f(x)− f(v), for u, v ∈ Vi

=⇒ w∗(u) 6= w∗(v), for u, v ∈ Vi.

This implies all vertices in G must have different weights. Consequently, χlida(G) ≥ |V (G)|.
To show χlida(G) ≤ |V (G)|, let V (G) = {v1, v2, ..., vn} such that deg(v1), deg(v2), ..., deg(vn)

forms a non-increasing sequence. Define a labeling f with

f(vi) = i, i ∈ [1, n]

We already know that the injectivity of f leads to w∗(u) 6= w∗(v) for u, v in a same partition.
Then, consider two partitions Vi, Vj in G with i < j and u ∈ Vi, v ∈ Vj . Since deg(u) ≤ deg(v)
and f(x) < f(y) for every x ∈ Vi, y ∈ Vj, i < j, it follows that w∗(u) < w∗(v). This implies that
every vertex v in V (G) has distinct weights. Therefore, f is LIDA labeling of G and χlida(G) ≤
|V (G)|.

We give an example of a LIDA coloring of K2,2,4 with their respective w∗(v) for every vertex
v ∈ V (K2,2,4) which induces χlida(K2,2,4) = 8 in Figure 2.

If a graph G of order n has χlida(G) = n, then the graph G is inclusive distance antimagic.
Hence, a lot of complete multipartite graphs are inclusive distance antimagic.

Corollary 3.1. If G is a complete multipartite graph which has at most 1 dominating vertex, then
G is inclusive distance antimagic.

One simple subclass which satisfy the condition in Theorem 3.1 are stars. Hence, the following
is also true.
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Figure 2: LIDA coloring of K2,2,4 with χlida(K2,2,4) = 8.

Corollary 3.2. For n ≥ 3, we have χlida(K1,n) = n+ 1.

Since χ(K1,n) = 2, then χlida(K1,n) − χ(K1,n) can be arbitrarily large. Hence, the following
problem is posed.

Problem 1. Characterize graphs G which have χlida(G) = χ(G).

Let S(G) be a subdivision of a graphG, that is a graph obtained from splitting every edges inG
into two edges that are adjacent to new vertices. The following theorem gives the LIDA chromatic
number of a subdivided star graph.

Theorem 3.2. For n ≥ 3, we have χlida(S(K1,n)) = 3.

Proof. Let V (S(K1,n)) = {v0, v1, v2, . . . , vn, u1, u2, . . . , un} and E(S(K1,n)) = {v0vi : i ∈
[1, n]} ∪ {viui : i ∈ [1, n]}. First, we prove the upper bound. For n = 3, it is easy to verify
that the vertex labeling of S(K1,3) shown in Figure 3 is a LIDA labeling of S(K1,3) which induces
a coloring of 3 colors: 11, 10, and 9. Thus, χlida(S(K1,n)) ≤ 3 for n = 3.

Figure 3: LIDA coloring of S(K1,3) which induces a coloring of three colors.

Now, we assume that n > 3. We define a vertex labeling f : V (S(K1,n)) → [1, 2n + 1] as
follows:

f(vi) = i+ 1, i ∈ [0, n],

f(ui) = 2n+ 2− i, i ∈ [1, n].
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It is easy to see that f is bijective, and the vertex coloring w induced by f is as follows:

w(v0) =
n∑

i=0

f(vi) =
n∑

i=0

(i+ 1) =
1

2
(n+ 1)(n+ 2),

w(vi) = f(v0) + f(vi) + f(ui) = 1 + (i+ 1) + (2n+ 2− i) = 2n+ 4, i ∈ [1, n],

w(ui) = f(vi) + f(ui) = (i+ 1) + (2n+ 2− i) = 2n+ 3, i ∈ [1, n].

Since n > 3, then for all i ∈ [1, n], we have

w(v0) =
1

2
(n+ 1)(n+ 2) > w(vi) = 2n+ 4 > w(ui) = 2n+ 3.

Thus, every pair of adjacent vertices have distinct colors where there are three colors: 1
2
(n+1)(n+

2), 2n + 4, and 2n + 3. So, f is a LIDA labeling of S(K1,n) which induces a coloring of three
colors. Therefore, χlida(S(K1,n)) ≤ 3.

Now, to prove the lower bound, assume to the contrary that χlida(S(K1,n)) ≤ 2. This implies
that there exists a LIDA labeling f of S(K1,n) such that w(v0) = w(ui) for every i ∈ [1, n]. By
Proposition 2.4 and the fact that n ≥ 3, we have

w(v0) ≥
(n+ 1)(n+ 2)

2
≥ 4(n+ 2)

2
≥ 2n+ 4.

Meanwhile, since n · w(u1) =
∑n

i=1w(ui), it follows that

w(u1) =
1

n

n∑
i=1

w(ui)

=
1

n

( ∑
x∈V (S(K1,n))

f(x)− f(v0)

)

≤ 1

n

(
(2n+ 1)(2n+ 2)

2
− 1

)
≤ 2n+ 3.

Consequently, w(v0) > w(u1), this leads to a contradiction. Therefore, χlida(S(K1,n)) ≥ 3.

For example, we present S(K1,5) with its LIDA coloring in Figure 4.
Next, we can provide a lower bound for any graphs G with some pendants.

Proposition 3.1. Let G be a graph, and p(v) be a number of vertices which are pendants and
adjacent to v. We have

χlida(G) ≥ 1 + max
v∈V (G)

{p(v)}
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Figure 4: LIDA coloring of S(K1,5) with χlida(S(K1,5)) = 3.

Proof. It is obvious for a graph G with no pendants, so assume G has some pendants. Let f be a
LIDA labeling of G and u be a vertex of G which is adjacent to some pendants x1, x2, ..., xk for
some positive integer k. By Proposition 2.3(b), we have

w(xi) 6= w(xj)

for every distinct i, j ∈ [1, k]. In addition, by Proposition 2.3(a), it follows that

w(u) > w(xi)

for any i ∈ [1, k]. Since we must have at least 1 + p(u) distinct weights in N [u], this implies

χlida(G) ≥ 1 + p(u).

Finally, since u is chosen randomly, we have

χlida(G) ≥ 1 + max
v∈V (G)

{p(v)}.

The preceding proposition is sharp, since χlida(K1,n) = n+ 1 = 1 + p(c) where c is the center
of K1,n.

Next, for positive integers n and m, a double star Sn,m is a graph obtained by connecting the
center vertices of two star graphs K1,n and K1,m. Thus, the graph Sn,m has n+m+ 2 vertices and
n+m+ 1 edges. The following theorem gives the LIDA chromatic number of Sn,n.

Theorem 3.3. For n ≥ 1, we have χlida(Sn,n) = n+ 2.

Proof. Let V (Sn,n) = X ∪ Y ∪ {x0, y0} where X = {xi : i ∈ [1, n]} and Y = {yj : j ∈ [1, n]},
and E(Sn,n) = {x0y0} ∪ {x0xi : i ∈ [1, n]} ∪ {y0yi : i ∈ [1, n]}. Firstly, we prove the upper
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bound. We define the vertex labeling f : V (Sn,n) −→ [1, 2n+ 2] as follows:

f(xi) =

{
1, i = 0;

2i+ 2, i ∈ [1, n].

f(yi) =

{
2, i = 0;

2i+ 1, i ∈ [1, n].

It is clear that f is bijective, and the vertex coloring w induced by f is as follow:

w(x0) = f(x0) + f(y0) +
n∑

i=1

f(xi) = 3 + 2 +
n∑

i=1

2i = n2 + 3n+ 3,

w(y0) = f(x0) + f(y0) +
n∑

i=1

f(yi) = 3 + 1 +
n∑

i=1

2i = n2 + 2n+ 3,

w(xi) = f(x0) + f(xi) = 1 + 2i+ 2 = 3 + 2i, for i ∈ [1, n],

w(yi) = f(y0) + f(yi) = 2 + 2i+ 1 = 3 + 2i, for i ∈ [1, n].

Since n ≥ 1, then we have

w(x0) = n2 + 3n+ 3 > w(y0) = n2 + 2n+ 3 > w(xn) = w(yn) = 3 + 2n

It is clear that 3 + 2i for i ∈ [1, n] are all distinct. So, f is a LIDA labeling of Sn,n which induces
n+ 2 colors. Therefore, χlida(Sn,n) ≤ n+ 2.

Now, we prove the lower bound. From Proposition 3.1, we have p(x0) = p(y0) = n, hence
χlida(Sn,n) ≥ n + 1. Now, we prove that there is no LIDA labeling which induces a coloring of
n+ 1 colors. It can be verified computationally that this is the case for n = 1, 2. Now, we assume
that n ≥ 3. Suppose to the contrary that there exists a LIDA labeling f which induces a coloring
w with n + 1 colors. Since all vertices in X are false twins and x0 is adjacent to all vertices in X ,
then all n+ 1 vertices in {x0}∪X must have distinct colors. Thus, each vertex corresponds to one
of the n + 1 colors of w. Same argument applies to the vertices of {y0} ∪ Y . These observations
imply that there exists an x ∈ X such that w(x) = w(y0). By giving the smallest labels [1, n + 1]
to {y0} ∪ Y , we obtain

f(x) = w(x)− f(x0) = w(y0)− f(x0) = f(y0) +
n∑

j=1

f(yj) ≥
1

2
(n+ 1)(n+ 2).

Since f(x) ≤ 2n + 2, then we have 1
2
(n + 1)(n + 2) ≤ 2n + 2 which is impossible for n ≥ 3.

Therefore, χlida(Sn,n) ≥ n+ 2.

In Figure 5, we can see S4,4 with χlida(S4,4) = 6.
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Figure 5: LIDA coloring of S4,4 with χlida(S4,4) = 6.

3.1. Some graph operations
We begin by giving a relationship between χlida(G) and χlida(G + K1) for a LIDA graph G

which has no dominating vertex. Note that if G has a dominating vertex, then G + K1 will have
two dominating vertices which constitute true twins, hence it is not LIDA. Later on, we will prove
a similar result for G+Kp for large enough p ≥ 2. Note that for any graph G and positive integer
p ≥ 2, the graph G+Kp is not LIDA since it has true twins.

Theorem 3.4. Let G be a LIDA graph without a dominating vertex. Then we have

χlida(G+K1) ≤ χlida(G) + 1.

Proof. Let n = |V (G)|, V (G+K1) = V (G)∪{u}, and E(G+K1) = E(G)∪{vu : v ∈ V (G)}.
Let χlida(G) = χ, so there exist a LIDA labeling f : V (G)→ [1, n] of G and the induced coloring
wf with χ colors. First, we prove the upper bound. We define a vertex labeling g : V (G+K1)→
[1, n+ 1] as follows:

g(x) =

{
f(x), x ∈ V (G);

n+ 1, x = u.

It is clear that g is bijective since f is bijective, and the vertex coloring wg induced by g is as
follows:

wg(x) = wf (x) + g(u) = wf (x) + (n+ 1), x ∈ V (G),

wg(u) = g(u) +
∑

x∈V (G)

f(x) =
1

2
(n+ 1)(n+ 2).

Observe that for any two adjacent vertices x, y ∈ V (G), wf (x) 6= wf (y) implies wg(x) 6= wg(y)
since f is a LIDA labeling ofG. Futhermore, sinceG has no dominating vertex, then for every x ∈
V (G), we have N [x] ⊂ V (G), and hence wf (x) =

∑
y∈N [x] f(y) <

∑
y∈V (G) f(y) = 1

2
n(n + 1),

so we have

wg(x) = wf (x) + (n+ 1) <
1

2
n(n+ 1) + (n+ 1) =

1

2
(n+ 1)(n+ 2) = wg(u).
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Thus, every two adjacent vertices in G + K1 have distinct colors. Observe that all vertices in G
still have χ colors, and u has a color which is distinct from all the colors of V (G). So, g is a LIDA
labeling ofG+K1 which induces a coloring wg of χ+1 colors. Therefore, χlida(G+K1) ≤ χ+1,
and the proof is complete.

Observe that the upper bound given in Theorem 3.4 is strict since it is attained by, for instance,
G ∼= C6: χlida(C6) = 2 and χlida(W6) = 3 (where W6

∼= C6 +K1). We present the coloring of C6

and W6 in Figure 6.

Figure 6: LIDA coloring of C6 and W6
∼= C6 +K1.

On the other hand, this upper bound is not attained by G ∼= C7 since χlida(C7) = χlida(C7 +
K1) = 5. This observation leads to the following problem.

Problem 2. Characterize graphs G satisfying χlida(G+K1) = χlida(G) + 1.

Next, we present the local inclusive distance antimagic chromatic number ofG+Kp for p ≥ 2.

Theorem 3.5. Let G be a graph of order n and minimum degree δ, and let p ≥ 2 be a positive
integer. If

p >
1

2
[−2n+ 1 +

√
8n2 + 8n+ 1− 4(δ + 1)(δ + 2)],

then χlida(G+Kp) ≤ χlida(G) + p.

Proof. Let n = |V (G)|, V (G + Kp) = V (G) ∪ U where U = {u1, u2, . . . , up}, and E(G +
Kp) = E(G) ∪ {vu : v ∈ V (G), u ∈ U}. Let χlida(G) = χ, so there exist a LIDA labeling
f : V (G) → [1, n] of G and the induced coloring wf with χ colors. We define a vertex labeling
g : V (G+Kp)→ [1, n+ p] as follows:

g(x) =

{
f(x), x ∈ V (G);

n+ j, x = uj, j ∈ [1, p].
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It is clear that g is bijective since f is bijective onto [1, n], and the vertex coloring wg induced by g
is as follows:

wg(x) = wf (x) +

p∑
j=1

(n+ j) = wf (x) + np+
1

2
p(p+ 1), x ∈ V (G),

wg(uj) = g(uj) +
∑

x∈V (G)

f(x) = j +
1

2
n(n+ 3), j ∈ [1, p].

Observe that the assumption for p implies (δ+ 1)(δ+ 2) > n(n+ 3)− p(p+ 2n− 1). Thus, from
Proposition 2.4, we have

min
x∈V (G)

wg(x) = min
x∈V (G)

wf (x) + np+
1

2
p(p+ 1)

≥ 1

2
(δ + 1)(δ + 2) + np+

1

2
p(p+ 1)

>
1

2
[n(n+ 3)− p(p+ 2n− 1)] + np+

1

2
p(p+ 1)

= p+
1

2
n(n+ 3)

= max
u∈U

wg(u).

This observation implies that V (G) and U share no common color since the minimum color in
V (G) is greater than the maximum color in U . Furthermore, observe that all vertices in V (G) still
have χ colors where the colors of two adjacent vertices are distinct, and all vertices in U have p
additional colors which are distinct to the colors in V (G) as mentioned before. Thus, every two
adjacent vertices have distinct colors, so g is a LIDA labeling of G+Kp which induces a coloring
of χ+ p colors. Therefore, χlida(G+Kp) ≤ χ+ p = χlida(G) + p.

As an example, consider G ∼= P5 +K4. Since |V (P5)| = 5 and δ(P5) = 1, we have

1

2
[−2(5) + 1 +

√
8(5)2 + 8(5) + 1− 4(1 + 1)(1 + 2)] =

1

2
(−9 +

√
217),

≤ 1

2
(6),

≤ 3.

Since p = 4 > 3, it follows that χlida(G) ≤ χlida(P5) + 4 = 6. Furthermore, the four false twins
in G have unique colors due to Proposition 2.3(b) and adjacent to the others. Since the rest of the
vertices must have at least two colors, we have shown that χlida(G) ≥ 6. As a result, χlida(G) = 6.
We present an illustration of the graph in Figure 7.
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Figure 7: LIDA coloring of G ∼= P5 +K4 where χlida(G) = 6.

Moreover, we can utilize super edge-magic total graphs to construct a graph with bounded
LIDA chromatic number.

Theorem 3.6. Let G be a super edge-magic total graph with an order n. Then, χlida(S(G)) ≤
n+ 1.

Proof. Let G be a graph with an order n and g be a super edge-magic total labeling of G with a
magic constant m. Define a labeling of f with

f(v) = g(v), for v ∈ V (G) ∪ E(G).

Let U and X be the set of vertices of S(G) with U = V (G) and X = E(G). Since g is a super
edge-magic total labeling, then f(u) ≤ n and f(x) ≥ n + 1 for every u ∈ U, x ∈ X . By the
construction of G, it can be seen that deg(x) = 2 for every x ∈ X . Now, to prove that f is a LIDA
labeling, it is sufficient to show that f(u) 6= f(x) for every adjacent u ∈ U, x ∈ X .

If deg(u) = 1, then clearly N [u] ⊂ N [x]. By Proposition 2.3(a), w(u) < w(x). Hence, we can
assume deg(u) ≥ 2. By giving the least labels to u, it follows that

w(u) ≥ f(u) + f(x) + n+ 1

Meanwhile, if we give x the largest labels, then

w(x) ≤ f(u) + f(x) + n

This implies w(x) < w(u) for every adjacent u ∈ U, x ∈ X . Therefore, f is a LIDA labeling.
Now, since for every x ∈ X ,w(x) = m, then f induces n+1 weights. Equivalently, χlida(S(G)) ≤
n+ 1.

In the application of Theorem 3.6, a LIDA coloring of a graph may be even lower than the
given upper bound. In Figure 8, since 3P3 is super edge-magic total, an illustration of yielding
upper bound of χlida(3P5) ≤ 6 is given.

Trivially, P2 is a super edge-magic total graph and it is not hard to check that S(P2) ∼= P3 and
χlida(P3) = 3. We are interested to see whether there exists other kind of graphs which satisfy the
equality in Theorem 3.6.

Problem 3. What kind of super edge-magic total graphs G satisfying χlida(S(G)) = n+ 1?
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Figure 8: 3P3 is super edge-magic total which implies χlida(3P5) ≤ 6.
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