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Abstract

Given two graphs G and H . The graph Ramsey number R(G,H) is the least natural number r
such that, for every graph F on r vertices, either F contains a duplicate of G or F contains a
duplicate of H . A vertex v is a dominating vertex in G if it is adjacent to every other vertices of G.
A wheel graph Wm consists of one dominating vertex and m other vertices forming a cycle. A fan
graph F1,m is formed from Wm by expelling one cycle-edge. In this paper, we consider the graph
Ramsey number R(Tn, F1,m) of a tree Tn versus a fan F1,m. Li et al. (2016) initiated the study on
R(Tn, F1,m) when Tn is a star. Sherlin et al. (2023) continued the research for Tn that is not a star
versus fan F1,m with even m ≤ 8. The graph Ramsey numbers R(Tn, F1,m) for odd m ≤ 8 will be
provided in this paper.
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1. Introduction

Let G(V,E) be a simple graph. Let G[X] be the maximal subgraph of G with vertex set
X , i.e. the induced sub-graph of G by X , for X ⊆ V (G). The degree degG(x) of a vertex
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x ∈ V (G) is defined as |{v ∈ V (G) : xv ∈ E(G)}|. The highest degree of G is represented by
∆(G) = max{deg(v) : v ∈ V (G)}, whereas the smallest degree of G is represented by δ(G) =
min{deg(x) : x ∈ V (G)}. We denote the neighbors of x in S as NS(x) = {s ∈ S : sv ∈ E(G)},
and E(S, T ) as the set of the edges between S and T for every x ∈ V (G) and S, T ⊆ V (G).

Let a tree Tn be an acyclic connected graph of order n, and a star Sn be a bipartite graphK1,n−1.
We refer to a multipartite graph as k-partite if it has k subsets of vertices V1, V2, . . . , Vk. When two
vertices in a k-partite graph are neighbors if and only if they belong to two distinct subsets, the
graph is said to be a complete k-partite. Kn1,n2,...,nk

is a complete k-partite graph with |Vi| = ni

for every i = 1, 2, . . . , k, while Km×n is a complete m-partite graph with |Vi| = n for every
i = 1, 2, . . . ,m. The notation Sn(l,m) refers to a tree of order n that is derived by subdividing
each of the l selected edges of Sn−m×l m times. Similarly, Sn(l) represents a tree of order n that
is formed by adding an edge to connect the centers of Sl and Sn−l. These follow the notations and
definitions in [4]. The hub vertex of Sn(l,m) is the center of Sn−m×l, while the hub vertex of Sn(l)
is the center of Sn−l. An illustration of star graphs, tree graphs, and some subdivisions of trees can
be seen in Figure 1.

A vertex v is a dominating vertex inG if it is adjacent to every other vertex ofG. A wheel graph
Wm consists of one dominating vertex and m other vertices forming a cycle Cm. All edges of the
cycles in the wheel are called cycle-edges or rims. Other edges of the wheel are called spoke-edges
or spokes. We use notation tWm to describe a graph with t copies of wheel Wm. A fan graph F1,m

is formed from a wheel Wm by removing one cycle-edge. We illustrate how some fan graphs can
be drawn as a subgraph of a wheel graph in Figure 2.

S5
T5

Sn(1, 2) Sn(2, 1)
Sn(3)

Figure 1: Star graph, tree graph, and some subdivision of tree graph

W8 F1,8
F1,6

F1,5 F1,4

Figure 2: Some fan graphs drawn as a subgraph of a wheel W8

The Ramsey number R(G,H) for a graph F of order r given two graphs G and H is the
smallest natural number r by which each of the following two conditions is satisfied: F contains
a duplicate of G or F contains a duplicate of H . In terms of coloring, R(G,H) = r states that
every edge coloring with two colors of the complete graph Kr of order r will always contain a
monochromatic G or H as a subgraph. A graph F on order r is (G,H, r)-good, or simply called
(G,H)-good, if G 6⊆ F and H 6⊆ F . Therefore, R(G,H) ≥ r + 1 if a (G,H)-good graph F
of order r could be identified. In other terminology, F is (G,H)–free if F contains no G and F
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contains no H . Thus we have an equivalent definition of the Ramsey number R(G,H) which is
the smallest positive integer r such that there is no (G,H)–free graph of order n. Some known
values of classical Ramsey number r(n,m) and graph Ramsey number R(G,H) can be found in
the dynamic survey of Radziszowski [24], whereas its applications were collected by Rosta in [25].

Let χ(H) denote the chromatic number of H , and c(G) represent the order of the largest com-
ponent of G. The relationship between R(G,H), χ(H), and c(G) was established by Chvátal and
Harary [9] in the theorem below.

Theorem 1.1. [9] R(G,H) ≥ (χ(H)− 1)(c(G)− 1) + 1.

Burr [22] then refines this lower bound by introducing the term s(H) as the chromatic surplus
of H , i.e. minimum cardinality of color classes taken over all proper χ(H)-coloring of H), as
follows.

Theorem 1.2. [22] R(G,H) ≥ (χ(H)− 1)(c(G)− 1) + s(H).

The graph G is called H–good when the above equality holds. The goodness of some G and
H were mentioned by Sudarsana in [23], as follows: Cn is Wm-good (Surahmat et al., 2006),
Pn is Wm-good for even m and n ≥ m − 1 ≥ 3 (Chen et al., 2005), Pn is tW4-good for n ≥
15t2 − 4t + 2, t ≥ 1 (Sudarsana, 2014), and Cn is tKm-good (Sudarsana, 2016). It has also been
conjectured that Cn is Km-good for n ≥ m ≥ 3, except for n = m = 3. Meanwhile, Chen et al.
[7] established that Sn is not W6-good for n ≥ 3.

Now, let us consider G as a tree Tn and H as a subgraph of a wheel Wm. In case H = Wm, if
m is even, then by Theorem 1.1 we have R(Tn,Wm) ≥ 2n − 1, otherwise R(Tn,Wm) ≥ 3n − 2.
However, determining an exact value of R(Tn,Wm) for any positive integers n,m ≥ 3 is hard.
Therefore, some authors investigated the graph Ramsey number of Tn versus Wm for a certain
class of trees or a fix value of m. We wrote some of their results in the next subsection.

1.1. Earlier Studies on R(Tn,Wm)

Surahmat et al. [12] established the Ramsey number for star versus wheel W4 and W5, while
Baskoro et al. [1] provided the Ramsey numbers for Tn which is not a star versus W4 and W5.
Their results were summarized in Theorem 1.3.

Theorem 1.3. [12]

• R(Sn,W4) =

{
2n+ 1, n even
2n+ 3, n odd

;n ≥ 4

• R(Tn,W4) = 2n− 1, n ≥ 4 if Tn is not a star

• R(Tn,W5) = 3n− 2, n ≥ 3 for every Tn

As mentioned in [7], Tn will be isomorphic to either Sn, Sn(1, 1), Sn(1, 2), Sn(2, 1), or Sn(3) if
we examine any Tn with ∆(Tn) ≥ n−3. Chen et al. [7] provided the Ramsey numbers R(Tn,W6)
and R(Tn,W7) with ∆(Tn) ≥ n− 3 in the following theorem.
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Theorem 1.4. [4, 7, 8]

• R(Sn,W6) = 2n+ 1, n ≥ 5

• R(Sn(1, 1),W6) = 2n, n ≥ 5

• R(Sn(1, 2),W6) =

{
2n , n ≡ 0 (mod 3)

2n− 1, n 6≡ 0 (mod 3)
;n ≥ 5

• R(Sn(2, 1),W6) = 2n− 1, n ≥ 5

• R(Sn(3),W6) = 2n− 1, n ≥ 5

• R(Tn,W7) = 3n− 2, n ≥ 6

Zhang et. al. [23, 24] determined the Ramsey number R(Sn,W8), while Hafidh and Baskoro
[10] determined R(Tn,W8) for Tn other than a star with ∆(Tn) ≥ n− 3. Their results can be seen
in the following theorem.

Theorem 1.5. [17, 18, 10]

• R(Sn,W8) =

{
2n+ 2 , n even
2n+ 1 , n odd

;n ≥ 5

• R(Sn(1, 1),W8) =

{
2n , n even
2n+ 1, n odd

;n ≥ 5

• R(Sn(1, 2),W8) =

{
2n , n 6≡ 3 (mod 4)

2n+ 1, n ≡ 3 (mod 4)
;n ≥ 8

• R(Sn(2, 1),W8) =

{
2n− 1, n odd
2n , n even

;n ≥ 8

• R(Sn(3),W8) =

{
2n− 1, n odd
2n , n even

;n ≥ 8.

In [19], Li et. al. have determined the Ramsey number R(Sn, F1,m) as follows:

Theorem 1.6. [19] Let m,n ≥ 2 be a natural number with m ≤ 2n− 1.

R(Sn, F1,m) =

{
2n+ bm/2c − 3 , n and m even
2n+ bm/2c − 2 , otherwise

Some exact values of R(Sn, F1,m) derived from Theorem 1.6 are presented in Corollary 1.1.
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Corollary 1.1. [19] Let n,m ≥ 2 be natural number with m ≤ 2n − 1. The Ramsey number for
star Sn of order n versus fan F1,m, 2 ≤ m ≤ 8 are as follows:

• R(Sn, F1,2) =

{
2n− 2 , n even
2n− 1 , n odd

• R(Sn, F1,3) = 2n− 1

• R(Sn, F1,4) =

{
2n− 1 , n even
2n , n odd

• R(Sn, F1,5) = 2n

• R(Sn, F1,6) =

{
2n , n even
2n+ 1 , n odd

• R(Sn, F1,7) = 2n+ 1

• R(Sn, F1,8) =

{
2n+ 1 , n even
2n+ 2 , n odd

Sherlin et. al. (2023) provided the following theorem which is useful to prove some results in
this paper.

Theorem 1.7. [20] If G, H1, and H2 be graphs with H2 ⊆ H1, then R(G,H2) ≤ R(G,H1).

Proof. Let R(G,H1) = n and F be any graph with n vertices. If G 6⊆ F , then H1 ⊆ F . Since
H2 ⊆ H1 and H1 ⊆ F , then H2 ⊆ F . Therefore, R(G,H2) ≤ n = R(G,H1).

1.2. Earlier Results on R(Tn, F1,m)

In this section, we write some results from Sherlin et. al. (2023) on R(Tn, F1,m) for a tree Tn
of order n other than a star versus fan F1,m with even m ≤ 8.

Theorem 1.8. [20] R(Tn, F1,4) = 2n− 1, n ≥ 4.

Proof. Since F1,4 ⊆ W4 andR(Tn,W4) = 2n−1, from Theorem 1.7 and 1.3 we getR(Tn, F1,4) ≤
R(Tn,W4) = 2n − 1. By Theorem 1.1, we know that R(Tn, F1,4) ≥ 2n − 1. Therefore,
R(Tn, F1,4) = 2n− 1.

Theorem 1.9. [20] The resulting Ramsey number R(Tn, F1,6) for a tree Tn of order n, excluding
stars, with ∆(Tn) ≥ n− 3 is as follows:

• R(Sn(1, 1), F1,6) = 2n, n ≥ 5
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• R(Sn(1, 2), F1,6) =

{
2n , n ≡ 0 (mod 3)

2n− 1, n 6≡ 0 (mod 3)
;n ≥ 5

• R(Sn(2, 1), F1,6) = 2n− 1, n ≥ 5

• R(Sn(3), F1,6) = 2n− 1, n ≥ 5

Theorem 1.10. [20] The resulting Ramsey number R(Tn, F1,8) for a tree Tn of order n, excluding
stars, with ∆(Tn) ≥ n− 3 is as follows:

• R(Sn(1, 1), F1,8) =

{
2n , even n
2n+ 1, odd n

;n ≥ 5

• R(Sn(1, 2), F1,8) =

{
2n , n 6≡ 3 (mod 4)

2n+ 1, n ≡ 3 (mod 4))
;n ≥ 8

• R(Sn(2, 1), F1,8) =

{
2n− 1, odd n
2n , even n

;n ≥ 8

• R(Sn(3), F1,8) =

{
2n− 1, odd n
2n , even n

;n ≥ 8.

The proofs of the two theorems above have been given in [20] thus were excluded in this paper.

2. Main Results

Let Tn be a tree of order n which is not a star and ∆(Tn) ≥ n − 3. We will provide an exact
value of R(Tn, F1,m) for odd m ≤ 7.

Theorem 2.1. R(Tn, F1,3) = 2n− 1, n ≥ 4.

Proof. This theorem is a direct consequence of Theorems 1.1, 1.7, and 1.8.

Theorem 2.2. R(Tn, F1,5) = 2n− 1, for all Tn, n ≥ 5

Proof. Let n ≥ 5. Consider F = 2Kn−1. It is obvious that F 6⊇ Tn and F 6⊇ F1,5. So,
R(Tn, F1,5) > 2n − 2 > 2n − 1. To show the upper bound, consider graph F of order 2n − 1
and F does not contain Tn. We will show that F contains F1,5. From Corollary 1.1, we have
R(Sn−1, F1,5) = 2n − 2. Since 2n − 2 > 2n − 1, then F ⊇ Sn−1 or F ⊇ F1,5. Suppose
that F ⊇ Sn−1 with u1 as the center (see Figure 3). Let U = V (Sn−1) = {u1, ..., un−1}, and
W = V (F − U) = {w1, ..., wn}. Since F 6⊇ Tn, we know that E(U,W ) = ∅ and W consists
of two components W1 and W2. Suppose that W1 is the smallest component of W , then there is
at least one vertex w1 in W1. Since n ≥ 5 and |W2| ≥ |W1|, then there are at least three ver-
tices w2, w3, w4 in W2. The induced graph in the complement by {u2, u3, u4, w1, w2, w3}, namely
F [w1, w2, w3, u2, u3, u4], contains F1,5 with w1 as the dominating vertex connected to the path
u2w2u3w3u4. Therefore, F ⊇ F1,5.
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Figure 3: Sn−1 in F and F1,5 in F

Theorem below will give R(Tn, F1,7) for tree Sn(1, 1) versus fan F1,7.

Theorem 2.3. R(Sn(1, 1), F1,7) = 2n, n ≥ 6

Proof. Let n ≥ 6. For even n, R(Sn(1, 1), F1,7) = 2n as a direct consequence of Theorems 1.7
and 1.10. Now let n be odd. From Theorem 1.9, we have 2n ≤ R(Sn(1, 1), F1,7). We will prove
that R(Sn(1, 1), F1,7) ≤ 2n. Let F be a graph of order 2n and F does not contain Sn(1, 1). We
will show that F contains F1,7. From Corollary 1.1, we know that R(Sn−1, F1,7) = 2n− 1. Since
2n > 2n − 1, then either F ⊇ Sn−1 or F ⊇ F1,7. Suppose that F contains Sn−1 with u1 as the
center (see Figure 4). Let U = V (Sn−1)−{u1} = {u2, ..., un−1}, and W = V (F )− (U ∪{u1}) =
{w1, ..., wn, wn+1}. Since F does not contain Sn(1, 1), then every vertex in U cannot be adjacent
to every vertex in W , thus E(U,W ) = ∅.

u1

u2

u3

u4

un−1

U

W

w1

w2

w3

wn

wn+1

F

u1

u2

u3

u4

u5

un−1

U W

w1

w2

w3

w4

wn+1

F

Figure 4: Sn−1 in F and F1,7 in F

Case 1: δ(F [W ]) ≤ n − 3. Let w1 ∈ V (F [W ]) be a vertex with degF [W ](w1) = δ(F [W ]) ≤
n−3. As |W | = n+1, we know that degF [W ](w1) ≥ n+1−1− (n−3) = 3. Let {w2, w3, w4} ⊆
NF [W ](w1). Then the induced subgraph in the complement by {w1, w2, w3, w4, u2, u3, u4, u5},
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namely F [w1, w2, w3, w4, u2, u3, u4, u5], contains F1,7 with w1 as the dominating vertex connected
to path u2w2u3w3u4w4u5. Therefore, F contains F1,7. Figure 4 shows an F1,7 in F with red and
blue edges, in which P7 is shown in red.

Case 2: δ(F [W ]) ≥ n − 2. It means that every vertex of F [W ] has a degree of at least n − 2.
W.l.o.g, let NF [W ](w1) = {w2, ..., wn−1}. Since δ(F [W ]) ≥ n − 2 and n ≥ 5, wn has at three or
more neighbours in F [W ]. If {w1, wn+1} ⊆ NF [W ](wn), then wn has one or more neighbour in
NF [W ](w1) forming an Sn(1, 1) in F . This is a contradiction.

w1

w2

w3

w4

wn−1

wn

Figure 5: Illustration of Case 2: Sn(1, 1) in F

As a conclusion, there is no graph F of order 2n that does not contain Sn(1, 1) and F does not
contain F1,7. Hence, R(Sn(1, 1), F1,7) ≤ 2n for n ≥ 5.

Next, to determine R(Sn(1, 2), F1,7), we are going to apply the lemma below.

Lemma 2.1. Let G be a graph of order 2n containing an Sn(1, 1), with n ≥ 8. If G does not
contain F1,7, then G contains Sn(1, 2).

Proof. For n ≥ 8, let G be a graph of order 2n which contains an Sn(1, 1). Let V (Sn(1, 1)) =
{u0, u1, ..., un−1} with u0 as the center of Sn(1, 1) in G and u0u1, u1un−1 ∈ E(Sn(1, 1)). Let
U = V (Sn(1, 1))−{u0, u1, un−1} = {u2, ..., un−2} andW = V (G)−V (Sn(1, 1)) = {w1, ..., wn}.
We are going to prove that ifG does not contain F1,7 thenGwill contain Sn(1, 2) by contraposition.
Suppose thatG does not contain Sn(1, 2), then un−1 cannot be adjacent to every other vertex except
u0 and u1, and every vertex in W can only have at most one neighbor in U . Thus, N(un−1) ⊆
{u0, u1} and |NG[U ](w)| ≤ 1,∀w ∈ W .

Case 1: There is a vertex u2 inG[U ] with three or more neighbors inG[W ], w.l.o.g. {w1, w2, w3}
⊆ NG[W ](u2). Since |NG[U ](w)| ≤ 1,∀w ∈ W , then we have u3, u4, u5, and u6 which are not
the neighbors of w1, w2, and w3 in G. The induced subgraph in the complement by vertex set
{w1, w2, w3, u3, u4, u5, u6, un−1}, namelyG[w1, w2, w3, u3, u4, u5, u6, un−1], will contain F1,7 with
un−1 as the center connected to path u3w1u4w2u5w3u6. Therefore,G contains F1,7. Figure 6 shows
that F1,7 in G has red and blue edges, with a P7 shown in red.

Case 2: Every vertex in G[U ] has maximum two neighbors in G[W ]. Suppose that we have
two vertices in G[U ] where each has two neighbors in G[W ], w.l.o.g. NG[W ](u2) = {w1, w2}
and NG[W ](u3) = {w3, w4}. Since |NG[U ](w)| ≤ 1,∀w ∈ W , then w1, w2, w3, and w4 are not
the neighbors of u4. Therefore, the induced subgraph G[w1, w2, w3, w4, u2, u3, u4, un−1] contains
F1,7 with un−1 as the dominating vertex connected to path w1u3w2u4w3u2w4 as shown in Figure 7
(left).
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Figure 6: Sn(1, 1) in G and F1,7 in G
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Figure 7: Illustration of Lemma 2 Case 2

As a result, there should be at most one vertex in G[U ] which has two neighbors in G[W ],
w.l.o.g. NG[W ](u2) = {w1, w2}. If NG[W ](ui) 6= ∅, suppose that wi ∈ NG[W ](ui) for i ∈
{3, 4, ..., n − 2}. Since |NG[U ](w)| ≤ 1,∀w ∈ W , then u3, u4, and u5 each has at most one
neighbor in W . The induced subgraph G[w3, w4, w5, u2, u3, u4, u5, un−1] contains F1,7 with un−1

as the dominating vertex connected to path u2w3u4w5u3w4u5 as shown in Figure 7 (right).

Theorem below gives the Ramsey number R(Sn(1, 2), F1,7) for n ≥ 8.

Theorem 2.4. R(Sn(1, 2), F1,7) = 2n, n ≥ 8.

Proof. Let n ≥ 8.
Case 1: n ≡ 0 (mod 3) and n 6≡ 3 (mod 4). R(Sn(1, 2), F1,7) = 2n is a direct consequence of
Theorems 1.7, 1.9 and 1.10.
Case 2: n 6≡ 0 (mod 3) and n 6≡ 3 (mod 4). Theorems 1.7 and 1.10 shows thatR(Sn(1, 2), F1,7) ≤
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2n. We will now show that R(Sn(1, 2), F1,7) ≥ 2n. Let n = 3k + i, 0 ≤ i ≤ 2, k ≥ 1. Consider
graph F = H ∪Kn−1, with

H =
(n− (3 + i)

3

)
C3 ∪ C3+i.

We know that Kn−1 6⊇ Sn(1, 2). Therefore, if there is an Sn(1, 2) in F , then it must be contained
in H . Choose a vertex u in H to be the center of Sn(1, 2) with degree n − 2. Regardless of
our choice of u, it is impossible to create a path P4 from u since there are only two independent
vertices left. Therefore, F does not contain Sn(1, 2). Now we will show that F does not contain
F1,7 by contradiction. Let us assume that F contains an F1,7. If the center of F1,7 is in Kn−1,
then we need 7 vertices to form P7 in H . This is not possible since H is a union of C3, C4,
or C5. If the center of F1,7 is in H , we cannot form an alternating path P7 from a vertex in
Kn−1 to NF (u) in H . Therefore, F does not contain F1,7. As the order of F is 2n − 1, then
R(Sn(1, 2), F1,7) > 2n− 1 ≥ 2n. Therefore, R(Sn(1, 2), F1,7) = 2n.
Case 3: n ≡ 0 (mod 3) and n ≡ 3 (mod 4). Theorems 1.7 and 1.9 shows thatR(Sn(1, 2), F1,7) ≥
2n. We will now show that R(Sn(1, 2), F1,7) ≤ 2n. Let F be a graph of order 2n and assume that
F1,7 6⊆ F . Since R(Sn(1, 1), F1,7) = 2n from Theorem 2.3, then Sn(1, 1) ⊆ F . Lemma 2.1 says
that F will contain Sn(1, 2). Thus, R(Sn(1, 2), F1,7) ≤ 2n. As a result, R(Sn(1, 2), F1,7) = 2n.
Case 4: n 6≡ 0 (mod 3) and n ≡ 3 (mod 4). The same good graph as in Case 2 and similar
proof as in Case 3 can be used to show that R(Sn(1, 2), F1,7) ≥ 2n and R(Sn(1, 2), F1,7) ≤ 2n
respectively.

To determine the Ramsey numbersR(Sn(2, 1), F1,7) andR(Sn(3), F1,7), we are going to utilize
the following lemma.

Lemma 2.2. Let G be a graph of order 2n and G contains Sn(1, 1), with n ≥ 7. If G does not
contain F1,7, then G contains Sn(2, 1) and Sn(3).

Proof. Let G be a graph of order 2n containing Sn(1, 1). Let V (Sn(1, 1)) = {u0, u1, ..., un−1}
with u0 as the center of Sn(1, 1) in G and u0u1, u1un−1 ∈ E(Sn(1, 1)). Let U = V (Sn(1, 1)) −
{u0, u1, un−1} = {u2, ..., un−2} and W = V (G) − V (Sn(1, 1)) = {w1, ..., wn}. First, we will
prove that if G does not contain F1,7, then G contains Sn(2, 1) by contraposition. Suppose that G
does not contain Sn(2, 1), then each vertex inU can not be adjacent to any other vertex inU and any
vertex in W , and so E(U,W ) = ∅ and G[U ] = Kn−3. As a consequence, the induced subgraph
G[w1, w2, w3, w4, u2, u3, u4, u5] will contain F1,7 with u2 as the dominating vertex connected to
path w1u3w2u4w3u5w4 as shown in Figure 8 (left). Therefore, G contains F1,7.

Second, we will prove that G contains Sn(3). Suppose on the contrary that G does not contain
Sn(3), thenNG(u1) = {u0, un−1}, which means that the only neighbors of u1 are u0 and un−1. Fur-
thermore, |NG[W ](ui)| ≤ 1 for i := 1 to n−2. Thus, |E(U,W )| ≤ n−3. IfNG[W ](ui) 6= ∅, suppose
that wi = NG[W ](ui) for i ∈ {2, ..., n−2}. There will be at least three vertices w1, wn−1, wn which
have no neighbor in U . As a consequence, the induced subgraphG[w1, wn−1, wn, u1, u2, u3, u4, u5]
contains F1,7 with u1 as the dominating vertex connected to path u2wn−1u3wnu4w1u5 as shown in
Figure 8 (right). Therefore, G contains F1,7.
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Figure 8: F1,7 is in G if Sn(2, 1) and Sn(3) is not in G

Theorem below will give the remaining values of R(Tn, F1,7) for a tree Tn which is not a star
with ∆(Tn) ≥ n− 3 versus fan F1,7.

Theorem 2.5.

• R(Sn(2, 1), F1,7) =

{
2n− 1, odd n
2n , even n

;n ≥ 8

• R(Sn(3), F1,7) =

{
2n− 1, odd n
2n , even n

;n ≥ 8.

Proof. For odd n ≥ 8, R(Sn(2, 1), F1,7) = R(Sn(3), F1,7) = 2n − 1 are direct consequences of
Theorems 1.1, 1.7, 1.9, and 1.10.
For even n ≥ 8, the upper bound is a direct consequence of Theorem 1.10, while the lower bound
is proved using Lemma 2.2.

3. Conclusion

In this paper we have determinedR(Tn, F1,m) for tree Tn which is not a star with ∆(Tn) ≥ n−3
versus fan F1,m with odd m ≤ 8, as follows.

1. R(Tn, F1,3) = 2n− 1, n ≥ 4.

2. R(Tn, F1,5) = 2n− 1, n ≥ 6.

3. R(Tn, F1,7) =

{
2n− 1, Tn = {Sn(2, 1), Sn(3)} and odd n
2n , otherwise

;n ≥ 8.
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