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Abstract

Under a totally irregular total k-labeling of a graph G = (V, E'), we found that for some certain
graphs, the edge-weight set W (E) and the vertex-weight set W (V') of G which are induced by
k=ts(G), W(E)NW(V) is a nonempty set. For which £, a graph G has a totally irregular total
labeling if W(E) N W (V) = (0?7 We introduce the total disjoint irregularity strength, denoted by
ds(G), as the minimum value & where this condition satisfied. We provide the lower bound of
ds(G) and determine the total disjoint irregularity strength of cycles, paths, stars, and complete
graphs.

Keywords: total disjoint irregularity strength, total irregularity strength, irregular total labeling

Mathematics Subject Classification : 05C78
DOI: 10.19184/ijc.2020.4.2.2

1. Introduction

Let G be a finite, simple, and undirected graph with the vertex set I and the edge set E. Let
f:VUE — {1,2,--- ,k} be a total k-labeling. Under f, the weight of a vertex v € V is
w(v) = f(v) + 3 per [(uv) and the weight of an edge uv € E is w(uv) = f(u) + f(uwv) + f(v).
If all the vertex (or edge)-weights are distinct then f is called a vertex (or edge) irregular total
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Figure 1. Totally disjoint irregular total labeling of (a) P3, (b) C3, (¢) K4, and (d) K5

k-labeling and the minimum value k such that G has a vertex (or edge) irregular total k-labeling is
called the total vertex (or edge) irregularity strength, denoted by tvs(G) (or tes(G)), respectively.
This parameters were introduced by Baca er al. [2]. They gave the boundary of tes(G) and
tvs(G) and determined that for n vertices, tvs(C,,) = tes(C,) = [%2], tes(P,) = [“H],
tvs(S,) = tes(S,) = [*E], and tvs(K,) = 2.

Later, Jendrol et al. [7] provided a better lower bound of tes((G) and determined that tes(K5) =
5 and tes(K,,) = [%W , for n # 5. For any tree 7', Ivanco and Jendrol [6] proved that tes(7")

is equal to the lower bound. Nurdin et al. [9] gave the lower bound for tvs for any graph G.

Recently, Marzuki er al. [8] combined the properties of tes(G) and tvs(G) and gave new
parameter called the total irregularity strength, denoted by ts(G). It is the minimum value k
for which G has a totally irregular total k-labeling. They proved that the lower bound ts(G) >
max{tes(G),tvs(G)} is sharp for C,, and P, except for P, or Ps. In [14], we proved that for
n # 2, ts(K,) = tes(K,). In [5], Indriati e al. proved that for n > 3, ts(S,,) = tvs(S,,). For
further reading, one can see [1], [3], [4], [5], and [10] - [13]. All these results showed that the
lower bound is sharp.

Observing ts(G), for the vertex weight-set 11/ (V') and the edge weight-set W (E') under a totally
irregular total labeling on G, W (V) N W (E) # 0. Considering this condition, we define a new
parameter called the total disjoint irregularity strength. A rotally disjoint irregular total k-labeling
of a graph G as a total labeling f : VUE — {1,2,--- |k} which satisfies: (i) for any two vertices
x#y eV, w) # wy); (ii) for any two edges z1y1 # Tays € E, w(z1y1) # w(ways); (iii)
W((V)NWI(E) = (); where W (V') (and W (E)) is the vertex (and edge) weight- set, respectively.
The minimum value k such that a graph G has a totally disjoint irregular total labeling is called the
total disjoint irregularity strength of a graph G, denoted by ds(G). Thus, for any graph G,

ds(G) > ts(G). (1

For instance, Fig. 1 shows a totally disjoint irregular total labeling of P, C5, K4, and K.
In this paper, we determine ds of cycles, paths, stars, and complete graphs.

2. Main Results

Let G = (V, E') be a connected graph. For G has a totally irregular total k-labeling f : VUE —
{1,2,--- ,k}, we need |V| + | E| distinct weights. Let 6 = §(G) (or A = A(G)) be the minimum
(or maximum) degree of vertex in G, respectively. Let n; be the number of vertices of degree 1,
where i = 6,0 + 1,--- ,A. Then |V| = Zfza n;. Now, assume that § = 1. Let f be a optimal
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labeling with respect to ds(G). Then the maximum weight has to be at least |E| + |V| + 1. The
maximum vertex weight is the sum of A + 1 labels and every edge weight is the sum of three labels

imply that & > {%W Moreover, when n; < A, |V| + | E| distinct weights are only exist

. |E|+|V]+1 |E|+n1+n2+1
if { A+l > 3

W. In the other hand, when n; > A, we have 2n; distinct weights
depend on 2 labels, such that |V | 4 | E| distinct weights are only exist if [%W > n;. Hence,

the minimum value k£ > max {nl, [w-‘ } Next, assume that 9 # 1. For f is optimal

then the minimum weight is at least 3. Then, k > PEH"I%QH

of ds(G).

-‘ . Thus we have the lower bound

Theorem 2.1. Let G = (V, E) be a connected graph. Let v be a pendant vertex and n;(i = 1,2)
be the number of vertices of degree i. Then

max 3 ny, {w_‘}, ifveV:;
dS(G) =z |E|4+n1+n2+2

by n2 ] ifog V.
Our next results show that this lower bound is sharp.

Theorem 2.2. Let my > 3 and my € N. Let C,,, be a cycle with m, vertices and P,,, be a path
with mo vertices. Then

2 2
ds(Crny) = [%W
_ 3, for mg = 3;
ds(Fm,) = { ’—2%-‘, otherwise.

To prove Theorem 2.2, we need this lemma.

Lemma 2.1. For any integers y and x;,1 < i < 2n, let {x;} be a sequence. If the sum of 3
consecutive integers in {x;} is

b, = JyTt2—2, for1<i<n-—1;
Ti + Tig1 + Tigz = Y+ dn—2i—3, forn<i<om—2
then
R R e forz::n—?)j: and1 < j < (%ﬂ ]
' Ton—it+2, fori=n—-3j+1land1 < j < [%ﬂ
Proof. Set all equations above as a linear system leads to the solution which is required. O

Now, we are able to prove Theorem 2.2.
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Proof. Let Cy,, = {v1,€1,02,€2, Uy, €, t and P, = {v1,€1,v9, €9, , U, }. Lett(my) =
[ 22221 and ¢(mo) = [252]. We divide the proof into two cases as follows:

Case 1. my =3

Suppose that ds(P3;) = 2. Since we need 5 distinct weight from 2 to 6, one endpoint (and its
incidence edge) can be labeled by 1 to have smallest weight. In the other hand, maximum weight
6 only can occur when the rest vertices and edge are labeled by 2. Hence, there are one vertex and
one edge of the same weight. Contrary to hypothesis. Thus, ds(P3) > 3. By label P as in Fig.1,
we have ds(P;) = 3.

Case2. m; > 3and my # 3

It is trivial for ny = 1. For n; > 3 and ny > 2, by Theorem 2.1, ds(le) > t(my) and ds(Py,,) >

t(msz). For the reverse inequality, we construct f; : VUE —> {1,2,- (mz)} fori = 1,2, as fol-
lows: Let fi"' = {v]"™,e]"", v3"", ey ---vt et} and f3* = {vl ,el 2,0y, ey - un2 } be the

alternating vertex (and edge) label-sets, where f;(v;) = vml, falvi) =", fi(e;) = €™, fa(e;) =
e, and W(Cp,,) = {w(v),w(e;) |1 <i<my}and W(P,,) = {w(v),w(er), w(vy), w(es),- -,
w(vy,,)} be the alternating vertex (and edge) weight-sets of C,,,, and P,,,, respectively. Let

d(m;) — t(m;) —1, form;=jmod3,7=0,1,my=j jmod3,j=0,2;
Yo t(m;), for m; = 2 mod 3, my = 1 mod 3.

We prove by induction on m;. For the base step, it is true that for f} = {1,1,2,3,3,1}, f{ =
{1,2,2,3,3,4,4,1}, and f} = {1,1,2,2,3,3,4,4,4,1}, we have W(C3;) = {3,4,6,8,7,5},
W (C,) = {4,5,7,8,10,11,9,6},and W (C5) = {3,4,5,7,8,10,11,12,9,6} and for f3 = {1,1, 2},
= {1,1,1,2,2,3,3}, and f§ = {1,1,1,3,4,4,4,2,3,1,3}, we have W(P) = {2,4,3},
W(Py) =1{2,3,4,5,7,8,6}, and W (Fs) = {2,3,5,8,11,12,10,9,6,7,4} such that fori = 1,2,
fi is a totally disjoint irregular total ¢(m;)- labeling, ds(C,,,) = t(m;) for m; € {3,4,5} and
ds(P,,,) = t(my) for my € {2, 4,6}, where the maximum weight is w(eg(m,))-
For the inductive step, we assume that for all k; and &, f; is a totally disjoint irregular total
t1-labeling of CY, and f5 is a totally disjoint irregular total ¢»-labeling of P, where

k; t;—1, fori=2ky=jmod9, je {1,2,8};
Ca(ky)

t;, fori e {1,2}, ko =jmod9, j € {0,3,4,5,6,7};
o _ t;—1, forie {1,2}, k1 =6,ko =jmod9, j€ {5,7,8};
(ki)+1 t, fori € {1,2}, k1 # 6,ks = jmod 9, j € {0,1,2,3,4,6);

and the maximum weight is w(eq,)).
Let G, = Cy, and Gy, = Py,. To prove that ds(G i,)13) = t(k; + 3) = ds(Gy,) + 2, we construct

G (k;)+3 from G, by subdividing e;,) as described in Fig.2. Deﬁnef +3\{ (k:))+1’ )+1’U((Z¢))j:;”
Ek ;+2, UEZ ))j:g, } = f Settmg w(ed( D) = U}(ed(ki+3)_2) and w(Vg(k,+3)11) = W(Vagk,)+1)
we have a # b for a b € W(G)+3) \ {0k 115 €)1 V(ks)+2> € (ki) +25 V(ki)+35 €(k;)+1 } - MoTeover,
Elizk)i;rg eg’; %ig = egzk)) and vgzk)i;fl = ((:))ﬁ’ = C(ll;k)i) - This is sufficient to apply Lemma 2.1.
Let {z; |1 < <8} = {eflki”?’ UEBI?, EIZgiivgléﬁﬁveﬁﬁ331)5’23137 Ezgig, +3 T }andy =
w(eqr,)) + 1. Then, we have v((k ))+2 (’E )) + 2, Ek ;Ig UZ )) + 2, and v +3 —1= EIZ ;ﬁ’,
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vy Vo Va, €q, Vap+1 Vdg+2 Uy

v, v,

vy vy Vg, Vkrz Viez Viss Va,+1 Vdg+2 Vi

Figure 2. The construction of Py 3 from P

where
3, fori =1,k; = 3;
t(ki) +1 fori = 1,k; # 3;
egzlgﬁ’ = 2k (ki) + 3, fori =2, ky = 8 mod 9;
2k; — 2t(k;) + 2, fori =2,ky =jmod9, j€{1,,2,5,7};
2k; — 2t(k;) + 1, fori =2 ko =jmod9, j€{0,3,4,6}.

Then, it can be checked that the maximum label is ds(Gy, ) +2 = ds(Gx,)+3). We have completed
the labeling f; on G 1,)13 and have proved that f; is a totally disjoint 1rregular total ¢(k;)-labeling.
Thus, for any posmve integer my > 3 and my € N, ds(Cl,,) = [2E2], ds(P,,,) = [222], for
meo 7é3and dS(Pg) =3. L]

Theorem 2.3. Letn € N, n > 3 and S,, be a star with n + 1 vertices, then ds(S,,) = n.

Proof. Let V(S,) = {v;|1 <i < n+ 1} where v, is the vertex of degree n. By Theorem 2.1,
ds(S,) > n. To prove the reverse inequality, we construct an irregular total labeling f : V U E —
{1,2,--- ,t} bydefine f(v;) =iforl <i<n—1, f(v,) =n—2, f(vy1) = n, f(v;v,41) = 1for
1<i<n-—1,and f(v,v,51) = 3. Hence, we have w(v;) = i+1for1 <i <n—1,w(v,) = n+1,
w(Vpe1) = 2n 4+ 2, w(Vvp1) =n+i+ 1forl <i < n—1,and w(v,v,1) = 2n + 1. See
that W (V) N W(E) = (). Thus, f is a totally disjoint irregular total labeling and ds(.S,,) = n for
n > 3. [

Next, by using our previous result in [14], we determine the exact value of ds(K,,). For the
convenient of reader, we provided the construction of totally irregular total labeling of K, for
n # 5,10,12 given in [14]. Let {” ’”*ﬂ = tand [“] = s. We divide the vertex-set into 3

mutually disjoint subsets, say A, B, and C, where A = {a; |1 <i < s}, B={b; |1 <i<n—2s},
and C ={¢; |1 <i<s}l. Letf:VUE — {1,2,---,t} defined by:

fla;)) = 1, forl <i<s;

fb) = (5)+sti—1)+1,forl <i<n-—2s;

f(e) = t, forl <i<s;

flaia;) = ( 1) forl1 <i<j<s;

flaiby) = 1, forl <i<s,1<j<n-—2s; (2)
flaic;) = s(i—1)+y7, for1 <i,j <s;

fliby) = stn—s—i—j+2)— () +(; 1)—i—zf0r1<z<j<n—2$;

f(bic;) = (" 25)+s(n—s)—t+]—|—1 forl1 <i<n-—2s51<j<s;

fleic)) = (g)—z(t—1)—(S*;+1)+j—z',for1§7;<jgs.
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Theorem 2.4. Letn € Nyn ¢ {i |6 < i < 59} U{61,62,65,68,71,74} and K,, be a complete
graph with n vertices. Then

n, forn <5;
ds(K,) = {%—‘ ., otherwise.

Proof. By 1 and Theorem 2.1, ds(K,,) > ts(K,). Lett = {%] For the reverse inequality,

we divide the proof into three cases as follows:
Casel.n <5
It is obvious for n < 3. Now, suppose that ds(/,) = 3. We need 10 distinct weight with minimum
weight 3. We can label 2 vertices and one edge by label 1. In the other hand, the maximum weight
should be 12. Labeling 3 edges and one vertex by label 3 implies that there are 2 edges with the
same weight 7. Contrary to hypothesis. Thus, ds(K4) > 4. To prove the upper bound for n = 4 or
5, we define f as in Fig. 1. Therefore, we have the exact value of ds(K,) for n < 5.
Case2.n="77orn >80
Consider that under the totally irregular total ¢- labeling of K, in (2), the maximum edge weight is
w(cs_1¢5) = (g) + 2 and minimum vertex-weight is w(a;) = # + n. It follow w(cs_1¢5) <
w(ay) implies vertex-weight set and edge weight set are disjoint. Thus, ds(K,) =t forn = 77 or
n > 80.
Case 3. n € {60, 63, 64,66,67,69,70,72,73,75,76, 78,79}
Consider that under the totally irregular total ¢- labeling of K, provided in (2), we met condition
where the minimum vertex-weight w(ay) is equal to the weight of an edge connecting vertices in
(B,C) or (C,C). Then, we modify f. Let E(K,,) = {e; |1 <i <n(n—1)/2}. Lete, € E(K,)
be an edge where w(a;) = w(ep). Since t = 2mod 3, then f(e,n—1)/2) = f(cs—1cs) =t — 1.
It implies that we can change f(e;) by f(e; + 1), for p < i < n(n — 1)/2 without changing the
maximum label such that W (V(K,,)) N W (E(K,)) = (. It complete the proof.

[

Open Problem
1. Forn e Nyn e {i |6 <i <59} U{61,62,65,68,71,74}, find the exact value of ds(K,).

2. For any graph G, find ds(G).
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