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Abstract

For a connected graph G = (V, E), let a set S be a m-set of G. A subset 7" C S is called a forcing
subset for S if S is the unique m-set containing 7. A forcing subset for S of minimum cardinality
is a minimum forcing subset of S. The forcing monophonic number of S, denoted by f,,,(.5), is the
cardinality of a minimum forcing subset of S. The forcing monophonic number of G, denoted by
Im(G), 18 fr(G) = min{ fn(S)}, where the minimum is taken over all minimum monophonic sets
in G. We know that m(G) < ¢g(G), where m(G) and g(G) are monophonic number and geodetic
number of a connected graph G respectively. However there is no relationship between f,,,(G) and
f4(G), where f,(G) is the forcing geodetic number of a connected graph G. We give a series of
realization results for various possibilities of these four parameters.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without loops or multiple
edges. The order and size of G are denoted by p and ¢ respectively. For basic graph theoretic ter-
minology, we refer to Harary [1]. The distance d(u, v) between two vertices u and v in a connected
graph G is the length of shortest u — v path in G. An u — v path of length d(u, v) is called an u — v
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geodesic. A vertex z is said to be lie a u — v geodesic P if z is a vertex of P including the vertices
u and v. A geodetic set of GG is a set S C V such that every vertex of G is contained in geodesic
joining some pair of vertices in S. The geodetic number g(G) of G is the minimum order of its
geodetic sets and any geodetic set of order ¢(G) is a minimum geodetic set or simply a g-set of G.
The geodetic number of a graph was introduced in [1] and further studied in [3, 4, 5, 7, 8, 9, 16,
17, 18, 20, 23, 25]. A subset 1" C S is called a forcing subset for S if S is the unique g-set of
G containing 7'. A forcing subset for S of minimum cardinality is a minimum forcing subset of
S. The forcing geodetic number of S, denoted by f,(.S), is the cardinality of a minimum forcing
subset of S. The forcing geodetic number of G, denoted by f,(G), is f,(G) = min{ f,(S)}, where
the minimum is taken over all minimum g-sets of G. The forcing geodetic number of a graph was
introduced in [3] and furthur studied in [19, 21, 22]. A chord of the path P is an edge joining to
non-adjacent vertices of P. An u — v path P is called monophonic path if it is a chordless path.
A monophonic set of G is a set S C V such that every vertex of G is contained in a monophonic
path joining some pair of vertices in M. The monophonic number m(G) of G is the minimum order
of its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set or
simply a m-set of G. The monophonic number of a graph was introduced in [6] and further studied
in[2,6,10, 11,12, 13, 14, 15, 19, 24]. A vertex v is said to be monophonic vertex of G if v belongs
to every minimum monophonic set of G. A vertex v is an extreme vertex of a graph G if the sub
graph induced by its neighbours is complete. A vertex v is said to be geodetic(monophonic) vertex
if v belongs to every g-set (m-set) of G. Every extreme vertices are geodetic(monophonic) vertices
of GG. In fact there are geodetic (monophonic) vertices which are not extreme vertices of G. Let G
be a connected graph and S a m-set of G. A subset 7' C S is called a forcing subset for S if S is
the unique m-set of G containing 7. A forcing subset for S of minimum cardinality is a minimum
forcing subset of S. The forcing monophonic number of S, denoted by f,,,(.5), is the cardinality
of a minimum forcing subset of S. The forcing monophonic number of G, denoted by f,,,(G) is
defined by f,,,(G) = min { f,,(S)}, where the minimum is taken over all m-sets S in G. The forcing
monophonic number of a graph was introduced in [11]. The Throughout the following G denotes
a connected graph with at least two vertices.The following theorems are used in the sequel.

Theorem 1.1. [4,12] If v is an extreme vertex of a connected graph G, then v belongs to every
geodetic (monophonic) set of G.

Theorem 1.2. [1, 12] For a connected graph G, g(G) = p (m(G) = p) if and only if G = K.

Theorem 1.3. [3,11] Let GG be a connected graph, then

a) fy(G) = 0= f,,(G) = 0if and only if G has a unique minimum geodetic (monophonic) set.

b) f,(G) < g(G)—|W|, (fm(G) < m(G)—|W|), where W is the set of all geodetic (monophonic)
vertices of G.

Theorem 1.4. [3, 11] For the complete graph G = K, f,(G) = f,(G) = 0.

2. The Forcing Monophonic and the Forcing Geodetic Numbers of a Graph

We know that m(G) < ¢(G). From the following examples, we observe that there is no rela-
tionship between f,,,(G) and f,(G).
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Example 2.1. For the graph G given in Figure 2.1, M = {v;, v5} is the unique m-set of G so that
fm(G) =0and m(G) = 2. Also S1 = {v1,v5,vs} and Sy = {vy, v5,v;} are the only two g-sets of
G such that f,(S1) = f,(52) =1sothat f,(G) =1and g(G) = 3. Thus f,,(G) < f,(G) < m(G) <
9(G).

Vg

Figure 2.2

Example 2.2. For the graph G given in Figure 2.2, M; = {vy, vs,v12}, Ms = {vq1,v9,v12} and
Ms = {vy,v10,v12} are the only three m-set of G so that f,,(M;) = f,.(Ms) = f.(M3) =1 so
that f,,,(G) = 1 and m(G) = 3. Also S = {v1, v7, 09, v12} is the unique g-set of G so that f,(G)
=0and g(G) = 4. Thus f,(G) < fn(G) <m(G) < ¢g(G).

3. Special graphs

In this section, we present some graphs from which various graphs arising in theorem are
generated using identification.

Let P; : wu;,v; be a copy of paths on two vertices. Let G, be the graph given in Figure 3.1
obtained from P; (< i < a) by introducing new vertices s, ¢ and joining each u; (1 < i < a) with
s and joining each v; (1 < i < a) with ¢ and join s with ¢.
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Figure 3.1

Let P; : n;,p; (1 < i < b) be a copy of path on two vertices and P : [,m,n be a path on three
vertices. Let 7, be the graph given in Figure 3.2 obtained from P; (1 < i < b) and P by joining
each n; (1 <i < b) with [, each p; (1 <i < b) with q.

m
Nz

Zy
Figure 3.2

Let P; : 73, hi, k; (1 < i < ¢) be a copy of path on three vertices and let P: e, f, g be a path
on three vertices. Let H. be the graph given in Figure 3.3 obtained from P; (1 < i < ¢) and P by
joining e and f with each h; and r; (1 < i < ¢), joining g with each k; (1 < i < ¢), joining h;
(1 <i<c)withk; (1 <i<c),andjoiningr; (1 <i<c)withk; (1 <i<ec).
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H,
Figure 3.3

Let U;: z;, y;, w; (1 <7 < d) be the path on three vertices. Let R, be the graph given in Figure
3.4 obtained from U; (1 < ¢ < d) by adding new vertices u and v by joining u with v and joining
each z; (1 < i < d) with u and joining each w; (1 < i < d) with v.

Xd Wq

Yd

Ry
Figure 3.4

4. Some realization results

Theorem 4.1. For every pair a, b of integers with 0 < a < b and b > 2, there exists a connected
graph G such that f,,,(G) = f,(G) =0, m(G) = a and g(G) = b.

Proof. If a = b, let G = K,. Then by Theorem 1.2, m(G) = g(G) = a. Also by Theorem
1.3(a), fn(G) = f4(G) = 0. For 1 < a < b, let G be the graph obtained from H,_, by adding new
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vertices x, 21, 2o, ..., 2,1 and joining the edges we, gz1, 922, ..., gzqo_1. Let Z = {x, 21, 20, ..., 241}
be the set of all end-vertices of (G. Then it is clear that Z is a monophonic set of G and so
by Theorem 1.1, Z is the unique m-set of G so that m(G) = a and hence by Theorem 1.3(a),
fm(G) = 0. Since the vertices h;, k; and r; (1 < i < b — a) does not lie on any geodesic
joining a pair of vertices in Z, we see that Z is not a geodetic set of GG. It is easily verified that
every g-set of G contains each h; (1 < i < b —a) and so g(G) > b. Now it is easily seen that
W = ZU{hy, ha, ..., hy_, } is the unique g-set of G and hence by Theorem 1.1 and Theorem 1.3(a)
g9(G) =band f,(G) = 0. O

Theorem 4.2. For every integers a,b and ¢ with 0 < a < b < cand ¢ > a + b, there exists a
connected graph G such that f,,(G) =0, f,(G) = a, m(G) =band ¢g(G) = c.

Proof. Case 1. a = 0. Then the graph G constructed in Theorem 4.1 satisfies the requirements of
this theorem.

Case 2. a > 1. Let G be the graph obtained from Z, and H._ (.14 by identifying the vertex
q of Z, and e of H._(,4p) and then adding new vertices z, 21, 22, ..., 2z,—1 and joining the edges
xl,gz1,9z2,...,qz_1. It is clear that Z is a monophonic set of G and by Theorem 1.1, 7 is the
unique m-set of G so that m(G) = b and hence by Theorem 1.3(a), f,,(G) = 0. Next we show
that g(G) = c. Let S be any geodetic set of G. Then by Theorem 1.1, Z C S. It is clear that
Z is not a geodetic set of G. For 1 < ¢ < a, let Q; = {n;,p;}. We observed that every g-set of
GG must contain at least one vertex from each @; (1 < i < a)andeach h; (1 <i<c—0b—a)
sothat g(G) > b+a+c—a—b=c. NowW = ZU{hy,ha,....he_ap} U{ni,na,...,n.}
is a geodetic set of G so that g(G) > b+ a+c—a —b = c. Thus g(G) = c. Since every
g- set contains W1 = Z U {hy,ho, ..., he_q_p} it follows from that from Theorem 1.3 (b) that
f4(G) < g(G)— | Wi |=¢— (¢ —a) = a. Now, since g(G) = c and every g-set of GG contains W,
it is easily seen that every g-set .S is of the form W; U {d;,ds, ...,d,} where d; € Q; (1 < i < a).
Let T be any proper subset of S with | 7' |< a. Then it is clear that there exists some j such that
T N Q; = ®, which shows that f,(G) = a. O

Theorem 4.3. For every integers a,b and ¢ with 0 < a < b < cand b > a + 1 there exists a
connected graph G such that f,(G) =0, f,,(G) = a, m(G) = band g(G) = c.

Proof. Case 1. a = 0. Then the graph G constructed in Theorem 4.1 satisfies the requirements of
this theorem.

Case 2. a > 1.
Subcase 2a. b = c. Let GG be the graph obtained from R, by adding new vertices z, 21, 2, . . .,
Zp—q—1 and joining the edges xu, vz1,v2a, ..., 02p_q 1. Let Z = {x, 21, 29, ..., 2o_q_1} be the set

of all end-vertices of GG. Let S be any geodetic set of G. Then by Theorem 1.1, Z C S. It is clear
that Z is not a geodetic set of G. For 1 <i < a, let H; = {x;, y;, w;}. We observe that every g-set
of G must contain only the vertex y; from each H; (1 < i < a) andso g(G) > b—a+a = b.
Now S = Z U {y1,y2,93,---,Ya} is a geodetic set of G so that g(G) < b —a + a = b. Thus
g(G) = b. Also it is easily seen that IV is the unique g-set of G and so f,(G) = 0. Now it is
clear that Z is not a monophonic set of G. We observe that every m-set of G must contain at least
one vertex from each H; (1 < i < a). Hence by Theorem 1.1, m(G) > b — a + a = b. Now
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Wy = ZUA{y1,92,Y3,---,Ya} is @ monophonic set of G so that m(G) < b — a + a = b. Thus
m(G) = b. Next we show that f,,,(G) = a. Since every m-set contains Z, it follows from Theorem
1.3 (b) that f,,(G) < m(G)— | Z |= b — (b — a) = a. Now, since m(G) = b and every m-set
of G contains Z, it is easily seen that every m-set S is of the form Z U {d;, ds, ds, . .., d,}, where
d; € H; (1 <i < a). Let T be any proper subset of S with | 7' |< a. Then it is clear that there
exists some j such that 7N H; = ®, which shows that f,,(G) = a.

Subcase 2b. b < c. Let GG be the graph obtained from R, and H._; by identifying the vertex v
of R, and g of H._; and then adding the new vertices x, z1, 29, . . ., 2,_,—1 and joining the edges
XU, G215 9%y - -y §2b—a—1- Let Z = {x,21,29,...,2,_q_1} be the set of end vertices of G. Let
S be any geodetic set of G. Then by Theorem 1.1 Z € S. It is clear that Z is not a geodetic
set of G. For 1 < i < a, let H; = {x;,y;, w;}. We observe that every g-set of G must contain
only the vertex y; (1 < i < a) from each H; (1 < i < a) and each h; (1 < 7 < ¢—b) and so
gG)>b—a+a+c—b=cNowW = ZU{y1,y2,93,--,Ya} U{h1,ho, hs,... , hep}isa
geodetic set of GG so that g(G) < b—a+ a+ c— b= c. Thus g(G) = c. Also it is easily seen
that W is the unique g-set of G and so f,(G) = 0. It is clear that Z is not a monophonic set of
G. We observe that every m-set of G must contain at least one vertex from each H; (1 < i < a)
and so m(G) > b—a+a =b. Now, S; = Z U {y1,¥2,¥3,---,Ya} is @ monophonic set of G
so that m(G) < b —a+ a = b. Thus m(G) = b. Next we show that f,,(G) = a. Since every
m-set contains Z, it follows from Theorem 1.3 (b) that f,,,(G) < m(G)— | Z |=b— (b —a) = a.
Now, since m(G) = b and every m-set of G contains Z, it is easily seen that every m-set S is of
the form Z U {dy, ds,ds, . ..,d,}, where d; € H; (1 < i < a). Let T be any proper subset of S
with | T' |< a. Then it is clear that there exists some j such that 7N H; = ®, which shows that
f(G) = a. O

Theorem 4.4. For every pair a, b and c of integers with 0 < a < b < ¢, b > a + 1 there exists a
connected graph G such that f,(G) = f,,(G) = a, m(G) = band g(G) = c.

Proof. Case 1. a = 0, then the graph G constructed in Theorem 4.1 satisfies the requirements of
this theorem.

Case2.a > 1,
Subcase 2a. b = c. Let G be the graph obtained from G, by adding new vertices z, z1, 2, . . .,
Zp—q—1 and joining the edges s, tzy,tz9, ..., tzp_q 1. Let Z = {x, 21, 22,..., 2441} be the set

of end-vertices of G. First we show that m(G) = b. Let M be any monophonic set of G. Then
by Theorem 1.1, Z C M. It is clear that Z is not a monophonic set of G. Let F; = {u;,v;}
(1 < i < a). We observe that every m-set of G must contain at least one vertex from each F;
(1 <i<a). Thusm(G) > b—a+a = b. On the other hand since the set W = ZU{vy,va, ..., 0.}
is a monophonic set of G, it follows that m(G) <| W |= b. Hence m(G) = b. Next we show
that f,,(G) = a. By Theorem 1.1, every monophonic set of GG contains Z and so it follows from
Theorem 1.3(b) that f,,(G) < m(G)— | Z |= a. Now, since m(G) = b and every m-set of G
contains Z, it is easily seen that every m-set S is of the form Z U {cy, cs, ..., c,}, Where ¢; € F;
(1 <i<a).LetT be any proper subset of S with | T |< a. Then it is clear that there exists some
J such that 7' N H; = &, which shows that f,,(G) = a. By similar way we can prove ¢(G) = b
and f,(G) = a.

Subcase 2b. b < c. Let G be the graph obtained from G, and H._; by identifying the vertex ¢ of
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(G, and the vertex e of H._;, and then adding the new vertices z, 21, 29, . . . , 2,_o—1 and joining the
edges x5, 921,922, - -, G%b—a_1-

First we show that m(G) = b. Let Z = {21, 22,..., 2p_a_1} be the set of all end-vertices of G.
Since the vertices u;, v; do not lie on any monophonic path joining a pair of vertices of Z, it is
clear that Z is not a monophonic set of G. Let F; = {u;,v;} (1 < i < a). We observe that
every m-set of G must contain at least one vertex from each F; (1 < ¢ < a). Thus m(G) >
b — a+ a = b. On the other hand since the set W = Z U {vy,v9,v3,...,v,} is a monophonic
set of G, it follows that m(G) < |W| = b. Hence m(G) = b. Next, we show that f,,(G) = a.
By Theorem 1.1, every monophonic set of G contains Z and so it follows from Theorem 1.3 (b)
that f,,,(G) < m(G)— | Z |= a. Now, since m(G) = b and every m-set of G contains Z, it is
easily seen that every m-set S is of the form Z U {cy, ¢o,¢3,...,¢,}, where ¢; € F; (1 < i < a).
Let T be any proper subset of S with | T |< a. Then it is clear that there exists some j such that
T N H; = &, which shows that f,,,(G) = a. Next we show that g(G) = c. Since the vertices
u;, vi,h; (1 < i < a) do not lie on any geodesic joining a pair of vertices of Z, it is clear that Z
is not a geodetic set of G. We observe that every g-set of G must contain each H; (1 < i < a)
and each h; (1 < i < ¢—b)sothat g(G) > b—a+ a+c—0b = c. On the other hand,
since the set S; = Z U {hy,ho, h3, ..., hep} U {ug,us, ..., u.} is a geodetic set of G, so that
g(G) <| Si |= c. Hence g(G) = c. Next we show that f,(G) = a. By Theorem 1.1, every
geodetic set of G contains Wy = ZU{hy, ho, hs, ..., he_p} and so it follows from Theorem 1.3(b)
that f,(G) < g(G)— | W1 |= a. Now, since g(G) = c and every g-set of G contains Z, it is
easily seen that every g-set S is of the form W7 U {cy, ¢a,¢3,..., ¢}, where ¢; € F; (1 < i < a).
Let T be any proper subset of S with | T |< a. Then it is clear that there exists some j such that
T N H; = ®, which shows that f,(G) = a. This is true for all g-sets of G so that f,(G) =a. [

Theorem 4.5. For every integers a,b,candd with2 < c < d,0<a<b<dandd >c—a+0b,
there exists a connected graph G such that f,,(G) = a, f,(G) = b, m(G) = cand g(G) = d.

Proof. Case 1. a = b = (. Then the graph G constructed in Theorem 4.1 satisfies the requirements
of this theorem.

Case 2. a = 0, b > 1. Then the graph G constructed in Theorem 4.2 satisfies the requirements of
this theorem.

Case 3. 1 < a = b. Then the graph G constructed in Theorem 4.4 satisfies the requirements of this
theorem.

Case 4. 1 < a < b. Let G; be the graph obtained from G, and Z;_, by identifying the vertex ¢ of
G, and the vertex [ of Z,_,. Now let G be the graph obtained from Gy and Hy_(.—q44) by identify-
ing the vertex g of (1 and the vertex e of Hy_(._,+s) and adding new vertices x, 21, 22, ..., Ze—a—1
and joining the edges xs,gz1, g2, ..., §Zc—a—1- Let Z = {x,21,29,...,2c_q_1} be the set of
end vertices of G. For 1 < i < alet F; = {u;,v;}. It is clear that any m-set is of the form
S =ZU{ci,ca,03,...,¢.) wWhere ¢; € F; (1 <i < a). Then as in earlier theorems it can be seen
that f,,,(G) = aand m(G) = c. For 1 <i < alet Q; = {n;, p;}. Itis clear that any g-set is of the
form W = Z U {hl, hg, hg, Ce ,hd,(c,aer)} U {Cl, Co,C3, ... ,Ca} U {dl, dg, d3, Ce ,db_a}, where
;€ Fi(1<i<a)andd; € Q; (1 <j <b—a). Then as in earlier theorems it can be seen that
fo(G) =band ¢g(G) = d. O
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Theorem 4.6. For every integers a,b,cand d with0 < a <b<c<dandc>b+1landc,d > 2
there exists a connected graph G such that f,(G) = a, f,,(G) = b, m(G) = cand ¢(G) = d.

Proof. Case 1. a = b = 0. Then the graph G constructed in Theorem 4.1 satisfies the requirements
of this theorem.

Case 2. a = 0, b > 1. Then the graph G constructed in Theorem 4.2 satisfies the requirements of
this theorem.

Case 3. 1 < a = b. Then the graph G constructed in Theorem 4.4 satisfies the requirements of this
theorem.

Case4. 1 <a <.

Subcase 4a. ¢ = d. Let GG be the graph obtained from G, and R;_, by identifying the vertex ¢ of
(G, and the vertex g of R;_, and then adding the new vertices x, z1, 2o, . . ., Z._—1 and joining the
edges xs,qz1,qz2, . . ., q%zc—p—1. First we show that m(G) = c. Let Z = {z, 21, 29, ..., 2c_p_1} be
the set of end vertices of G. Let F; = {u;,v;} (1 <i <a)and H; = {x;,y;, w;} (1 <i<b—a).
It is clear that any m-set of G is of the form S = Z U {cy,¢a,¢3,...,¢c.} U{dy,da,ds, ... dy_o}
where ¢; € F; (1 < i < a)andd; € Hj (1 < 5 < b— a). Then as in earlier theorems
it can be seen that f,,,(G) = b and m(G) = c. It is clear that any g-set is of the form W =
ZUA{y1, Y2, Y3y - - Yo—a} U{c1,c2,¢3,...,¢a}, where ¢; € F; (1 < ¢ < a). Then as in earlier
theorems it can be seen that f,(G) = a and m(G) = c.

Subcase 4b. ¢ < d. Let G; be the graph obtained from GG, and R,_, by identifying the vertex ¢ of
G, and the vertex v of R,_,. Now let GG be the graph obtained from G; and Z,_. by identifying
the vertex ¢ of (G; and the vertex [ of Z; . and then adding new vertices x, 21, 22, . . ., Ze_p_1
and joining the edges xs, gz1,qz2,. .., qzc—p-1. Let Z = {x,21,29,..., zc—p—1} be the set of end
vertices of G. Let F; = {u;,v;} (1 < i < a)and H; = {z;,y;,w} (1 < i < b—a) It
is clear that any m-set of G is of the form S = Z U {c1,¢9,¢3,...,¢a} U{dy,da,ds, ... dy_o}
where ¢; € F; (1 < i < a)andd; € H; (1 < j < b—a). Then as in earlier theorems
it can be seen that f,,,(G) = b and m(G) = c. It is clear that any g-set is of the form W =
Z U {yl, Y2, Y3, ... ,yb_a}U{hl, hg, hg, RN hd—c} U {Cl, C2,C3, ... ,Ca} where c € E (1 S 1 S a).
Then as in earlier theorems it can be seen that f,(G) = a and g(G) = d. O

In the realiztion results we have given some restrictions on the parameters. So we leave the
following as open question.

Problem 1. For any four positive integers a,b,c and d witha > 0, b > 0 and 2 < ¢ < d, does there
exists a connected graph G with f,,(G) = a, f,(G) = b, m(G) = cand g(G) = d.

S. The Upper Forcing Monophonic number of a graph

In [25], P. Zhang introduced the concept of the upper geodetic number of a graph. In the similar
manner we define the upper forcing monophonic number of a graph as follows.

Definition 5.1. Let GG be a connected graph and .S a m-set of G. A subset 7' C S is called a forcing
subset for S if S is the unique m-set containing 7. A forcing subset for S of minimum cardinality
is a minimum forcing subset of S. The forcing monophonic number of S, denoted by f,,,(5), is
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the cardinality of a minimum forcing subset of S. The forcing monophonic number of G, denoted
by fn(G) is defined by f,,,(G) = min { f,,,(5)}, where the minimum is taken over all m-set S in G
and the upper forcing monophonic number of G, denoted by [, (G) = maz{f,,(S)}, where the
maximum is taken over all m-sets S in G.

Theorem 5.2. For every connected graph G, 0 < f,,(G) < f1(G) < m(G).

Example 5.3. The bounds in Theorem 5.2 is sharp. For G = K ,_1, f(G) = 0. For G = Cs,
fm(G) = f1(G) = 2. Also the inequalities in Theorem 5.2 can be strict. For the graph G given
in Figure 5.1, My = {v1,v4,v5}, My = {v1,v4,v6} and My = {vy, v3,vs5} are only three m-sets
of G so that f,,,(My) = 2, f(Mz) = 1 and f,,,(M3) = 2 so that f,,(G) = 2, f,/(G) = 2 and
m(G) = 3. Thus 0 < f,,(G) < f1(G) < m(G).

%1
U7 Y]
Vg V3
2
143 G
Figure 5.1

So we leave the following as a open question.

Problem 2. For any three positive integers a,b and ¢ with 0 < a < b < ¢, does there exists a
connected graph G with f,,(G) = a, f,}(G) = band m(G) = .
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