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Abstract

Let G(V,E) be a finite simple graph and k be some positive integer. A vertex k-labeling of graph
G(V,E), φ : V → {1, 2, . . . , k}, is called edge irregular k-labeling if the edge weights of any two
different edges in G are distinct, where the edge weight of e = xy ∈ E(G), wφ(e), is defined as
wφ(e) = φ(x) + φ(y). The edge irregularity strength for graph G is the minimum value of k such
that φ is irregular edge k-labeling for G. In this note we derive the edge irregularity strength of
chain graphs mK3 − path for m 6≡ 3(mod 4) and C[C

(m)
n ] for all positive integers n ≡ 0(mod 4)

and m. We also propose bounds for the edge irregularity strength of join graph Pm + Kn for all
integers m,n ≥ 3.
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1. Introduction

Let G(V,E) be a finite simple graph and k be some positive integer. A vertex k-labeling of
graph G(V,E), φ : V → {1, 2, . . . , k}, is called edge irregular k-labeling if the edge weights of
any two different edges in G are distinct, where the edge weight of e = xy ∈ E(G), wφ(e), is
defined as wφ(e) = φ(x) + φ(y). The edge irregularity strength for graph G is the minimum value
of k such that φ is irregular edge k-labeling for G.
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LetG(V,E) be a finite simple graph with vertex set V (G) and edge setE(G). We denote by xy
the edge having end vertices x and y, with x, y ∈ V (G). Let k be some positive integer. A vertex
k-labeling of graph G(V,E), φ : V → {1, 2, . . . , k}, is called edge irregular k-labeling if the edge
weights of any two different edges in G are distinct, where the edge weight of e = xy ∈ E(G),
wφ(e), is defined as wφ(e) = φ(x) + φ(y). The edge irregularity strength for graph G, es(G), is
the minimum value of k such that φ is irregular edge k-labeling for G.

Following [3], we mean a block of a graph is a maximal subgraph with no cut vertex. A graph
H is called a block-cut-vertex graph of graph G if the vertices of H are blocks and cut-vertices of
G, and two vertices in H are adjacent whenever one vertex is a block in G and the other one is a
cut-vertex in G belonging to the block. A chain graph is a graph with blocks B1, B2, . . . , Bm such
that for every i, Bi and Bi+1 have a common vertex in such a way that the block-cut-vertex graph
is a path. If Bi = Bj = B for all i, j ∈ {1, 2, . . . ,m}, then the chain graph is denoted by C[B(m)].

Furthermore, if B is identical to the complete graph of n vertices, C[K
(m)
n ] is frequently denoted

by mKn − path.
Edge irregularity strength for some graphs have been established. (See eg. [1], [4], [5]). In

this note we derive the edge irregularity strength of chain graphs mK3 − path for m 6≡ 3(mod 4)
and C[C

(m)
n ] for all positive integers n ≡ 0(mod 4) and m. We also propose bounds for the edge

irregularity strength of join graph Pm +Kn for all integers m,n ≥ 3.

2. Main Results

Through out this paper, we restrict our discussion only for finite simple graph. Let G be a
graph. For some vertex v ∈ G, d(v) stands for the degree of the vertex v. The maximum degree of
G, ∆(G), is defined as the maximum value of d(v), v ∈ G. The label of vertex v will be frequently
denoted by l(v). Moreover, if x is a real number and s is the smallest integer such that s ≥ x, then
we write s = dxe.

The following lemma is for facilitating the proof of Theorem 2.1.

Lemma 2.1. For any positive integer r, we have

a. d3(2r+3)
2
e = 5 + 3r.

b. d3(4r+6)
2
e = 9 + 6r.

Proof. We will only prove the a part of the lemma. The b part is omitted.
The proof is carried out using mathematical induction principles for r.
For r = 1, by inspection we can see that the relation is true. Now assume the lemma is true for any
positive integer r = s. Thus we have d3(2s+3)

2
e = 5 + 3s. Consider r = s+ 1. We have

d3(2(s+ 1) + 3)

2
e = d3((2s+ 3) + 2)

2
e = d3(2s+ 3)

2
+ 3e = d3(2s+ 3)

2
e+ 3.

Based on the induction assumption, d3(2s+3)
2
e = 5 + 3s, we obtain d3(2(s+1)+3)

2
e = 5 + 3(s + 1).

Therefore, we may conclude that d3(2r+3)
2
e = 5 + 3r for all positive integer r.
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We will start the main discussion with a fundamental theorem on edge irregularity strength of
simple graphs.

Theorem 2.1 (Ahmad, Al-Mushayt, Bǎca [2]). IfG(V,E) is a simple graph with maximum degree
∆(G), then es(G) ≥ max{d |E(G)|+1

2
e,∆(G)}.

Regarding the irregularity strength of mK3− path, we present the following theorem which is
due to Ahmad, Gupta, and Simanjuntak [1].

Theorem 2.2. For any positive integer m, d3(m+1)
2
e ≤ es(mK3-path) ≤ 2m+ 1.

Following this theorem, they then propose an open problem below.

Open Problem 1. For any positive integer m, determine the irregularity strength of mK3-path.

With respect to this problem, in this discussion we derive a partial solution for it, that is for
m 6≡ 3(mod 4). The following Subsection 2.1 will give explanation on how we derive the partial
answer.

2.1. Irregularity Strength of mK3 − path
As a motivation we will show some examples of some labeling of mK3 − path with their

irregularity strengths: chain graph 4K3 − path with es(4K3-path) = 8 = d3(m+1)
2
e(see Figure 1);

chain graph 5K3 − path with es(5K3 − path) = 9 = d3(m+1)
2
e(see Figure 2).

Figure 1. es(4K3-path) = 8

Figure 2. es(5K3 − path) = 9

In the following, we will show how we define an irregular labeling for mK3 − path, m 6≡ 3(mod
4), and show that es(mK3 − path) = d3(m+1)

2
e.

First, we denote the vertices of chain graph mK3− path as we see in Figure 3. Thus, the chain
graph mK3 − path has the following elements:

• V (mK3-path) = {xi : 1 ≤ i ≤ m+ 1} ∪ {yj : 1 ≤ j ≤ m}, and
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Figure 3. Vertex names for mK3-path

• E(mK3-path) = {xixi+1, xiyi, xi+1yi : 1 ≤ i ≤ m}.

We will proceed using mathematical induction principles for m. We consider two cases on m:
m even and m ≡ 1(mod 4).
Case m even.
First we introduce two 2K3 − paths having different irregular labeling. The one in Figure 4 we
call as adder A and the other in Figure 5 we call as adder B.

Figure 4. Adder A

Figure 5. Adder B

Remark From these two adders we have the following important observations with respect to
inductive process: If we add by 3 all vertex labels of adder A (resp. adder B), then from the
resulting labeling we get that l(x3) of adder A(resp. adder B) is the same as l(x1) of adder B(resp.
adder A). Then we identify these two vertices x3 of adder A(adder B) and x1 of adder B(adder A),
to have 4K3 − path with an irregular labeling. This remark is indeed needed for concluding the
labeling irregularity of the resulting graph through mathematical induction process. We will call
a derivation graph for the resulting graph which is obtained by adding all vertex labels of graph
with the same constant (in this instance the constant is 3).

Furthermore, we create a seed graph 2K3−path as is shown in Figure 6, for the commencement
of inductive process. Here m = 2, and we can immediately see that this graph has edge irregular
labeling with es(2K3 − path) = 5 = d3(m+1)

2
e. The next process of induction is conducted as

follows. All labels of this seed graph 2K3 − path are added up by constant 3. The resulting graph
2K3−pathwill have l(x3) = 2+3 = 5. It is easy to see that the irregularity of induced edge labels
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Figure 6. 2K3-path with es(2K3 − path) = 5

are maintained for the derivation graph, since all vertex labels increase to the same constant 3. This
irregularity property always holds any time we produce derivation graphs. Then we identify vertex
xm+1 from the derivation of mK3 − path with vertex x1 of adder A if l(xm+1) = 6 or of adder B
if l(xm+1) = 5. For example, on the derivation of 2K3 − path we have that l(x2+1) = l(x3) =
2 + 3 = 5. This label is the same as l(x1) of adder B. Thus, we identify vertex x3 of the derivation
of 2K3−pathwith x1 of adder B. The resulting chain graph 4K3−path has edge irregular labeling
with es(4K3 − path) = 8 = d3(4+1)

2
e. This chain graph is shown in Figure 1.

Now observe the derivation of the resulting 4K3 − path. Since the rightmost two blocks of
the resulting chain graph 4K3 − path are adder B, as described in the remark, we can identify
vertex x5 from the derivation of 4K3 − path with vertex x1 of adder A. The resulting chain graph
6K3 − path is shown in Figure 7.

Let m = 2l for some positive integer l. Continue this identifying process to produce (m +
2)K3−path from the derivation ofmK3−path and adder A or from the derivation ofmK3−path
and adder B as follows: If l is even, we identify vertex xm+1 from the derivation ofmK3−pathwith
vertex x1 of adder A, and if l is odd, we identify vertex xm+1 from the derivation of mK3 − path
with vertex x1 of adder B.

Figure 7. 6K3 − path with es(6K3-path) = 11

Let r be the number of times we repeat identification process for producing chain graph
(2 + 2r)K3 − path. We see that each identification process results in the increase of irregu-
larity strength by 3. Since the seed chain graph 2K3 − path has es(2K3 − path) = 5, then
we get that es((2 + 2r)K3 − path) = 5 + 3r which is by Lemma 2.1, equal to d3(2r+3)

2
e =

d3((2r+2)+1)
2

e = d3(m+1)
2
e. Therefore, we can conclude that for case m even, we obtain that

es(mK3 − path) = d3(m+1)
2
e.

Now we discuss for case m ≡ 1(mod 4).
It is clear that es(K3 − path) = 3. So, for m = 1 we have es(mK3 − path) = 3 = d3(m+1)

2
e. For

m = 5, an irregular labeled chain graph 5K3−path is shown in Figure 2. Observe that all induced
edge labels of this chain graph take all integers from 3 up until 17. This indicates that the largest
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vertex label is the irregularity strength of the graph. Thus, es(5K3 − path) = 9.
We will use this chain graph as the seed graph to construct an irregular labeling for chain graph

mK3 − path with m ≥ 5. Note that l(x6) = 5.

Figure 8. es(5K3-path) = 9

Furthermore, we construct a chain graph 4K3 − path, with irregular labeling as is shown in
Figure 9. Observe that the induced edge labels of this adder C also run from 3 up to 14, and that
l(x1) = 11 and l(x5) = 5.

Figure 9. Adder C

The technique we use to produce bigger mK3 − path is the same as the technique we applied
for m even. First add by 6 to all vertex labels of mK3 − path, m ≥ 5. The resulting derivation
graph will also have irregular labeling with the smallest edge label equals 3+6+6 = 15. This edge
label is the successor of the largest edge label of adder C which is equal to l(x1x2) = 14. Moreover,
we have l(xm+1) = 5 + 6 = 11 in the derivation graph which is the same as l(x1) in adder C. We
identify these two vertices to produce (m+ 4)K3− path having irregular labeling. For m = 5, we
have es((m+ 4)K3− path) = 9 + 6 = 15 as is shown in Figure 10. Continuing this identification
process, we see that the resulting chain graph (m + 4)K3 − path has l(xm+1) = l(x10) = 5
because this comes from l(x5) of adder C. Continuing this process we will have irregular labeling
for mK3 − path, with m ≥ 5.

Figure 10. Chain graph 9K3-path with es(9K3-path) = 15.

The irregularity strength of the chain graphmK3−path is derived as follows. We know already that
es(5K3−path) = 9. Let r stand for the number of times we do identification processes. Thus, after
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conducting r times identification processes, we have m = 5 + 4r and es(mK3 − path) = 9 + 6r.
Using Lemma 2.1 we can conclude that es(mK3 − path) = 9 + 6r = d3(4r+6)

2
e = d3(m+1)

2
e.

Therefore, for case m ≡ 1(mod 4) we also have that es(mK3 − path) = d3(m+1)
2
e.

Based on this above observation we proved already the following theorem.

Theorem 2.3. For all positive integers m 6≡ 3 (mod 4), es(mK3-path) = d3(m+1)
2
e.

Based on this result, with respect to irregularity strength ofmK3−path, we have the following
reduced open problem instead of the one proposed by Ahmad, Gupta, and Simanjuntak in [1].

Open Problem 2. For any positive ingeter m ≡ 3(mod 4), determine the es(mK3 − path).

2.2. Irregularity strength of C[C
(m)
n ] for n ≡ 0(mod 4)

In [1] it is shown that for cycle graph of 4 vertices, C4, the irregularity strength of chain graph
C[C

(m)
4 ] is 2m+ 1. Then, from this fact they proposed the following conjecture.

Conjecture 1. For m ≥ 2, n ≥ 5, the edge irregularity strength of C[C
(m)
n ] is dmn+1

2
e.

Here we also address this formulated conjecture, and introduce a solution for n ≡ 0(mod 4) as
we describe below. First we name vertices of C[C

(m)
n ] as shown in Figure 11. Therefore, the graph

C[C
(m)
n ] has elements:

V (C[C
(m)
n ]) = {x0, y0} ∪ {xi1, xi2, . . . , xin−2 : 1 ≤ i ≤ m}

∪{c1, c2, . . . , cm−1}, and
E(C[C

(m)
n ]) = {cixin−3, cixin−2, cixi+1

1 , cix
i+1
2 : 1 ≤ i ≤ m− 1}

∪{xijxij+2 : 1 ≤ i ≤ m; 1 ≤ j ≤ n− 4}
∪{x0x1i , x0x12, y0xmn−3, y0xmn−2}.

Figure 11. Chain graph C[C
(m)
n ] with its vertex labels

Furthermore, we will show that for all n ≡ 0(mod 4) and all positive integer m, es(C[C
(m)
n ]) =

dmn+1
2
e. Since n is even, we have that dmn+1

2
e = mn

2
+ d1

2
e = mn

2
+ 1. This is formulated as the

following theorem.

Theorem 2.4. For all n ≡ 0(mod 4) and all positive integer m, we have es(C[C
(m)
n ]) = mn

2
+ 1.
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Proof. To this, we label graph C[C
(m)
n ] using the following function

f(x0) = 1,
f(y0) = mn

2
+ 1,

f(ci) = ni
2

+ 1 for 1 ≤ i ≤ m− 1,

and for 1 ≤ i ≤ m,

f(xij) =


n
2
(i− 1) + j+1

2
j = 1, 5, . . . , N1,

n
2
(i− 1) + j+2

2
j = 2, 4, . . . , n− 2,

n
2
(i− 1) + j+3

2
j = 3, 7, . . . , N3.

where N1 := max{s ∈ Z+ : s ≤ n− 3, s ≡ 1(mod 4)} and N3 := max{s ∈ Z+ : s ≤ n− 3, s ≡
3(mod 4)}.

Note that the largest vertex label is equal to f(y0) = mn
2

+ 1. So, we need only to show that the
labeling function f gives irregular labeling for C[C

(m)
n ]. This will be completed as the following.

Let us see the case m = 1.
Using the above labeling function f , we can see that:

1) {f(x0) = 1},
2) {f(x1j) : j = 2, 4, . . . , n− 2} = {2, 3, . . . , n

2
},

3) {f(x1j) : j = 1, 5, . . . , N1} = {1, 3, 5, . . . , N1+1
2
},

4) {f(x1j) : j = 3, 7, . . . , N3} = {3, 5, 7, . . . , N3+3
2
}, and

5) f(y0) = n
2

+ 1.

Recall that

E(C[C
(m)
n ]) = {cixin−3, cixin−2, cixi+1

1 , cix
i+1
2 : 1 ≤ i ≤ m− 1}

∪{xijxij+2 : 1 ≤ i ≤ m; 1 ≤ j ≤ n− 4}
∪{x0x1i , x0x12, y0xmn−3, y0xmn−2}.

So, the edge labels of C[C
(1)
n ], L(C[C

(1)
n ]), is equal to

L(C[C
(1)
n ]) = ∅ ∪ {4, 5, 6, . . . , n− 2, n− 1} ∪ {2, 3, n, n+ 1}

= {2, 3, . . . , n− 2, n− 1, n, n+ 1}.

From this last equation, we conclude that the function f is irregular labeling for the case m = 1.

Now let us see for case m ≥ 2.
If we rename x0 and y0 as c0 and cm, respectively, then we see that f(ci) = f(ci−1) + n

2
, with

1 ≤ i ≤ m; and f(xij) = f(xi−1j ) + n
2
, with 2 ≤ i ≤ m. Since the function f for C[C

(1)
n ] is

irregular, we may conclude that f is irregular labeling for all positive integer m and all positive
integer n ≡ 0(mod 4). Thus we may conclude that the theorem is proved.
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We mention again that this result confirms a partial portion of above Conjecture 1. Therefore,
the remaining problem now is as the following conjecture.

Conjecture 2. For potive integers m ≥ 2, n ≥ 5, n 6≡ 0(mod 4), the edge irregularity strength of
C[C

(m)
n ] is dmn+1

2
e.

2.3. Irregularity strength for Pm +Kn

Figure 12. Vertex names for Pm +Kn

Now we will proceed to address irregularity strength of join graph Pm + Kn which is also
discussed in [1] for certain cases. Some bounds for the irregularity strength of this graph for all
integers n ≥ 3 and 3 ≤ m ≤ 6 were proposed in [1].

In this paper, we derive bounds for the irregularity strength of the graph for all integers m ≥ 3
and n ≥ 3. We will see later that for 3 ≤ m ≤ 6 and n ≥ 3, our bounds are the same as in [1].
Therefore, our bounds can be considered as some extension of those in [1].

Before we formulate the bounds, we will start the process by firstly naming vertices of graph
Pm +Kn as in Figure 12. So, the graph has elements as follows.

V (Pm +Kn) = {x1, x2, . . . , xm} ∪ {y1, y2, . . . , yn}, and
E(Pm +Kn) = {xixi+1 : i ∈ {1, 2, . . . ,m− 1}}

∪{xiyj : i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}

Theorem 2.5. For positive integers m,n ≥ 3, we have

dm(n+1)
2
e ≤ es(Pm +Kn) ≤


(2n+1)m+1

2
− n, for m odd

(2n+1)m+2
2

− n, for m even.

Proof. For the lower bound follows the result which is formulated in Theorem 2.1. Here we only
discuss the upper bound in the theorem. Consider again the diagram of graph Pm+Kn as is shown
in Figure 12. Now we introduce the following labeling function for Pm +Kn.
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f(yj) = j + 1, j = 1, 2, . . . , n,

and for i = 1, 2, . . . ,m,

f(xi) =


(2n+1)i+1

2
− n, for i odd

(2n+1)i+2
2

− n, for i even.

Observe that, by a simple calculation, for 1 ≤ i ≤ m − 1, we have f(xi+1) − f(xi) = n + 1
if i is odd, and f(xi+1) − f(xi) = n if i is even. Thus, for every i, 1 ≤ i ≤ m − 2, we have
f(xi+2) = f(xi) + 2n+ 1. This implies that

f ′(xi+2yj) = f ′(xiyj) + 2n+ 1, with i = 1, 2, . . . ,m− 2, j = 1, 2, . . . , n,

(1)
f ′(xi+1xi) = f ′(xixi−1) + 2n+ 1 with i = 1, 2, . . . ,m− 1,

where f ′(xy) = f(x) + f(y), xy ∈ E(Pm +Kn).
Furthermore, we see also that f ′(x1yj) = f(x1) + f(yj) = 1 + (j + 1) = j + 2, f ′(x2yj) =

f(x2)+f(yj) = (n+1)+(j+1) = n+2+j, and f ′(x1x2) = f(x1)+f(x2) = 1+(n+2) = n+3.
So, here we have

{f ′(x1yj), f ′(x1x2), f ′(x2yj) : j = 1, 2, . . . , n} = {3, 4, . . . , n+ 2, n+ 3, n+ 4, . . . , 2n+ 2},
which are all distinct.

Moreover, since we have Eqn (1), then we may conclude that all induced edge labels of Pm+Kn

are distinct, and therefore f is irregular labeling. The largest vertex label is f(xm) = (2n+1)m+1
2

−n
if m is odd, or f(xm) = (2n+1)m+2

2
− n if m is even. Hence, the theorem is proved.

We inform here that for all n ≥ 3 and 3 ≤ m ≤ 6, our bound meets the bound proposed in [1].
Therefore, our result can be considered as an extension result of the formulated result in [1].

3. Conclusion

We derived partial solutions for open problems and conjectures proposed in [1]. The remaining
problems are still worth to be observed. Especially for the irregularity strength of Pm + Kn, we
see that the gap between the lower and the upper bounds is big enough. It seems to be possible to
narrow the gap.
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