Local edge antimagic chromatic number of join product of graphs

Tita Khalis Maryati, Fawwaz Fakhrurrozi Hadiputra

Abstract


Let f : V(G) \to [1,|V(G)|] be a bijective mapping of the vertex set of a graph G to the integers 1 through |V(G)|. A labeling f is defined as a local edge antimagic labeling if, for any two adjacent edges uv and vx in E(G), their weights satisfy wf(uv) ≠ wf(vx), where the weight of an edge uv is given by wf(uv) = f(u) + f(v). The weight wf induces a proper edge coloring on G. The local edge antimagic chromatic number of G, denoted χlea'(G), is the minimum number of colors required among all colorings induced by local edge antimagic labelings of G. In this paper, we investigate the local edge antimagic coloring of join product of graphs, particularly for independent sets, paths, and cycles.

Keywords


edge coloring; local edge antimagic; join product

Full Text:

PDF

DOI: http://dx.doi.org/10.19184/ijc.2025.9.2.2

References

I. H. Agustin, Dafik, Moch. Hasan, R. Alfarisi, and R. M. Prihandini, On the local edge antimagic coloring of graphs, Far East J. Math. Sci. 102(9) (2017), 1925--1941.

M. Bača, Y. Lin, M. Miller, and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Util. Math. 60 (2001), 229--239.

M. Bača, Y. Lin, M. Miller, and M. Z. Youssef, Edge-antimagic graphs, Discrete Math. 307(11--12) (2007), 1232--1244.

I. J. Chandra and D. R. Silaban, Local edge antimagic chromatic number of comb products involving path graph, Electron. J. Graph Appl. 13(1) (2025), 171--195.

H. Enomoto, A. S. Llado, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math. 34(2) (1998), 105--109.

J. A. Gallian, A dynamic survey of graph labelings, Electron. J. Combin. #DS6, 2024.

F. F. Hadiputra and T. K. Maryati, A note on local edge antimagic chromatic number of graphs, Proyecciones 43(2) (2024), 447--458.

F. F. Hadiputra, D. R. Silaban, and T. K. Maryati, Super local edge anti-magic total coloring of paths and its derivation, Indones. J. Combin. 3(2) (2020), 126--139.

F. F. Hadiputra, K. A. Sugeng, D. R. Silaban, T. K. Maryati, and D. Froncek, Chromatic number of super vertex local antimagic total labelings of graphs, Electron. J. Graph Appl. 9(2) (2021), 485--498.

T. K. Maryati and F. F. Hadiputra, Graphs with the highest local edge antimagic chromatic number, submitted.

A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13(4) (1970), 451--461.

V. Priyadharshini and M. Nalliah, Local distance antimagic chromatic number for the union of complete bipartite graphs, Tamkang J. Math. 54(4) (2024), 281--291.

S. Rajkumar and M. Nalliah, On local edge antimagic chromatic number of graphs, Proyecciones 41(6) (2022), 1397--1412.

W.C. Shiu, G.C. Lau and M. Nalliah, Local distance antimagic chromatic number of join product of graphs with cycles or paths, Hacettepe J. Math. Stat. 53(3) (2024), 788--802.


Refbacks

  • There are currently no refbacks.


ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats