Local edge antimagic coloring for chain of path and cycle

Yosua Walfried, Ivana Joice Chandra, Denny Riama Silaban

Abstract


Let G=(V,E) be a simple connected graph with vertex set V and edge set E. A local edge antimagic labeling of G is a bijection f:V (G)→{1, 2, 3, ... , |V(G)|} where the weights of any two adjacent edges of G are distinct. The weight of an edge uv is defined as w(uv) = f(u)+f(v). By assigning the color w(uv) to each edge uvE(G), we obtain a proper local edge antimagic coloring of G. The minimum number of colors required for edge coloring induced by the local edge antimagic labeling is called a local antimagic chromatic index of G. In this article, we give the exact value of the local antimagic chromatic index for the chain of path and cycle graphs.


Keywords


Cycle, local edge antimagic chromatic number, local edge antimagic labeling, path.

Full Text:

PDF

DOI: http://dx.doi.org/10.19184/ijc.2025.9.1.2

References

I. H. Agustin, M. Hasan, Dafik, R. Alfarisi, and R. M. Prihandini, Local edge antimagic coloring of graphs, Far East J. Math. Sci., 102 (2017), 1925–1941.

S. Arumugam, K. Premalatha, M. Baca, and A. Semanicova-Fenovcıkova, Local antimagic vertex coloring of a graph, Graphs Comb., 33 (2017), 275–285.

J. Bensmail, F. Desormeaux, and S. Senhaji, Local antimagic edge labeling of trees, J. Graph Theory, 91(4) (2019), 379–394.

H. Choi, S. Kim, and J. Park, Local antimagic edge colorings in generalized graph families, Discrete Appl. Math., 278 (2020), 16–26.

R. Diestel, Graph Theory, 5th ed., Berlin: Springer, 2017.

N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, 1990.

S. Lee, J. Liu, and X. Zhang, Local antimagic edge labeling for planar graphs, J. Comb., 11(2) (2020), 199–217.


Refbacks

  • There are currently no refbacks.


ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats