Γ-supermagic labeling of products of two cycles with dihedral groups
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.19184/ijc.2025.9.1.1
References
D. Froncek, Supermagic labelings of Cn⁊Cm, (2022), https://arxiv.org/2212.14836
D. Froncek, Γ-supermagic labeling of 4-regular Archimedean graphs with dihedral groups, Bull. Inst. Combin. Appl., 104 (2025), 80--94.
D. Froncek, J. McKeown, J. McKeown, M. McKeown, ℤ2nm-supermagic labeling of Cn⁊Cm, Indones. J. Combin., 2(2) (2018), 57--71.
D. Froncek, M. McKeown, Note on diagonal construction of ℤ2nm-supermagic labeling of Cn⁊Cm, AKCE Int. J. Graphs Comb., 17(3) (2020), 952--954.
D. Froncek, P. Paananen, L. Sorensen, Group-supermagic labeling of Cartesian product of two odd cycles, Bull. Inst. Combin. Appl., 101 (2024), 39--53.
D. Froncek, P. Paananen, L. Sorensen, Group-supermagic labeling of Cartesian product of two even cycles, Discrete Math., 347(8) (2024), paper No. 113741.
J. Ivančo, On supermagic regular graphs, Math. Bohem., 125 (2000), 99--114.
P. Paananen, Γ-supermagic Labeling of Cn⁊Cm, MS Thesis, University of Minnesota Duluth, Duluth, MN, U.S.A., 2021.
J. Sedláček, Problem 27, in: M. Fiedler (Ed.), Theory of Graphs and Its Applications, Praha, 1964, pp.163–164.
L. Sorensen, Γ-supermagic Labeling of Cn⁊Cm, MS Thesis, University of Minnesota Duluth, Duluth, MN, U.S.A., 2020.
R. Stanley, Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J., 40 (1973), 607--632.
R. Stanley, Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings, Duke Math. J., 43 (1976), 511--531.
B. M. Stewart, Magic graphs, Canad. J. Math., 18 (1996), 1031--1059.
P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc., 13 (1962), 47--52.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.