On local antimagic vertex coloring of corona products related to friendship and fan graph

Zein Rasyid Himami, Denny Riama Silaban


Let G=(V,E) be connected graph. A bijection E → {1,2,3,..., |E|} is a local antimagic of G if any adjacent vertices u,v ∈ V satisfies w(u)≠ w(v), where w(u)=∑e∈E(u) f(e), E(u) is the set of edges incident to u. When vertex u is assigned the color w(u), we called it a local antimagic vertex coloring of G. A local antimagic chromatic number of G, denoted by χla(G), is the minimum number of colors taken over all colorings induced by the local antimagic labeling of G. In this paper, we determine the local antimagic chromatic number of corona product of friendship and fan with null graph on m vertices, namely, χla(Fn ⊙ \overline{K_m}) and χla(f(1,n) ⊙ \overline{K_m}).


Local antimagic coloring, the chromatic number, corona products, friendship and fan graph

Full Text:


DOI: http://dx.doi.org/10.19184/ijc.2021.5.2.7


S. Arumugam, K. Premalatha, M. Bača, and A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, Graphs and Comb. 33 (2017). DOI: 10.1007/s00373-017-1758-7.

S. Arumugam, Tao-Ming Wang, and K. Premalatha, On local antimagic vertex coloring for corona products of graph, (2018). ArXiv:1808.04956v1.

R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. (1970), 322-325.

J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2019).

F. F. Hadiputra, D. R. Silaban, and T. K. Maryati, Super local edge anti-magic total coloring of paths and its derivation, Indones. J. Combin. 3 (2019). DOI: 10.19184/ijc.2019.3.2.6.

N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, (1990).

E. Y. Kurniawati, I. H. Agustin, Dafik, and Marsidi, On the vertex local antimagic total labeling chromatic number of GK2, J. Phys. Conf. Ser.  1211 (2019). DOI: 10.1088/1742-6596/1008/1/012035.

G.C. Lau, W.C. Shiu, and Ho-Kuen Ng, On local antimagic chromatic number of graphs with cut-vertices, (2018). ArXiv:1805.04801v5.

N. H. Nazula, S. Slamin, and D. Dafik, Local antimagic vertex coloring of uncyclic graphs, Indones. J. Comb2 (2018). DOI: 10.19184/ijc.2018.2.1.4.

S. A. Pratama, S. Setiawani, Slamin, Local super antimagic total vertex coloring of some wheel related graphs, J. Phys. Conf. Ser. 1538 (2020). DOI: 10.1088/1742-6596/1538/1/012014.

D.F. Putri, Dafik, I. H. Agustin, and R. Alfarisi, On the local vertex antimagic total coloring of some families tree, J. Phys. Conf. Ser.  1008 (2018). DOI: 10.1088/1742-6596/1008/1/012035.

Slamin, N. O. Adiwijaya, M. A. Hasan, Dafik and K. Wijaya, Local super antimagic total labeling for vertex coloring of graphs,  Symmetry12 (2020). DOI: 10.3390/sym12111843.


  • There are currently no refbacks.

ISSN: 2541-2205

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View IJC Stats