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Abstract

A G-decomposition of the complete graph Kn is a family of pairwise edge disjoint subgraphs of
Kn, all isomorphic to G, such that every edge of Kn belongs to exactly one copy of G. Using
standard decomposition techniques based on ρ-labelings, introduced by Rosa in 1967, and their
modifications we show that each of the ten non-isomorphic connected unicyclic graphs with eight
edges containing the pentagon decomposes the complete graph Kn whenever the necessary condi-
tions are satisfied.
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1. Introduction

A decomposition of the complete graph Kn is a family of pairwise edge disjoint subgraphs
D = {G0, G1, . . . , Gs} such that every edge of Kn belongs to exactly one member of D. If each
subgraph Gr is isomorphic to a given graph G we speak about a G-decomposition of Kn, or a
G-design. The decomposition is cyclic if there exists an ordering (x1, x2, . . . , xn) of the vertices
of Kn and isomorphisms φr : G0 → Gr, r = 0, 1, 2, . . . , s, such that φr(xi) = xi+r for each
i = 1, 2, . . . , n. The subscripts are taken modulo n. Similarly, the decomposition is one-rotational
if there exists an ordering (x1, x2, . . . , xn) of the vertices of Kn and isomorphisms φr : G0 → Gr,
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r = 0, 1, 2, . . . , s, such that φr(xi) = xi+r for each i = 1, 2, . . . , n − 1 and φr(xn) = xn. The
subscripts here are taken modulo n− 1.

A graph G is unicyclic if it contains exactly one cycle. In this paper, we provide the necessary
and sufficient conditions for decompositions of complete graphs into each of the ten connected
unicyclic graphs with eight edges containing the pentagon and prove that each of them decomposes
the complete graph Kn whenever the necessary conditions are satisfied.

We will use standard decomposition methods based on ρ-labelings, introduced by Rosa [8] as
well as some other slightly modified well-known tools.

2. Related results

It seems that there has been no attempt to completely classify graphs with 8 vertices and 8
edges decomposing complete graphs. Between the time the results contained in this paper were
obtained and prepared for publication, a partial result on four particular connected graphs with
pentagon was published in [10]. The methods used in the paper were mostly design theory based
and are significantly different from methods that we use in this paper. Therefore, for the sake of
completeness, we include our results for those graphs as well.

At the same time, there are several papers on decompositions of Kn into graphs with 8 edges
and 5, 6 or 7 vertices.

This section will summarize what is known about classification of smaller graphs, that is,
graphs where |(E(G)| ≤ 8 or |(V (G)| ≤ 8 that form decompositions of complete graphs. An
exhaustive search was conducted, and the following results were found, however, due to the lim-
ited availability of some journals there could be other results not summarized here.

Graphs with five vertices and eight edges were examined by Colbourn, Ge, and Ling in 2008,
due to their applicability with respect to the problem of grooming traffic in optical networks [3].
There are only two non-isomorphic graphs with five vertices and eight edges, shown in Figure 1.

G5,1 G5,2

Figure 1: Connected graphs with 8 edges and 5 vertices

Colbourn, Ge and Ling proved the following results for the graphs G5,1 and G5,2.

Theorem 2.1 (Colbourn, Ge, Ling 2008). There exists a decomposition of Kn into G5,1 if and only
if n ≡ 0 (mod 16) except possibly when n = 32 or n = 48.

Theorem 2.2 (Colbourn, Ge, Ling 2008). There exists a isomorphic decomposition of Kn for G5,2

if and only if n ≡ 0, 1 (mod 16) except when n = 16 and possibly when n = 48.

25



www.ijc.or.id

Decomposition of Kn into connected unicyclic graphs with 8 edges ... | D. Froncek and O. Kingston

Kang, Yuan, and Liu researched graphs with six vertices and eight edges in 2005 [7]. There
are 22 non-isomorphic graphs of this type, and they proved the following theorem with respect to
decompositions of complete graphs.

Theorem 2.3 (Kang, Yuan, Liu 2005). Let G be a connected graph with six vertices and eight
edges. Then G forms a decomposition of Kn if and only if n ≡ 0, 1 (mod 16) and n ≥ 16 with
two possible exceptions for n = 32.

We were unable to find any results on graphs with 8 edges and 7 vertices.
For graphs with 8 edges and 8 vertices, Kang and Zhang determined the spectrum completely

for the four graphs shown in Figure 2.

G1 G2 G3 G4

Figure 2: Graphs G1, G2, G3, G4 by Kang and Zhang

Theorem 2.4 (Kang, Zhang 2015). Let Gi be a connected graph with eight vertices and eight
edges shown in Figure 2. Then Gi forms a decomposition of Kn if and only if n ≡ 0, 1 (mod 16)
and n ≥ 16.

Bipartite connected unicyclic graphs with 8 edges and 8 vertices other than C8 were studied by
Fahnenstiel and Froncek in [5]; C8 decompositions exist if and only if n ≡ 1 (mod 16) as proved
by Rosa [8].

Theorem 2.5 (Fahnenstiel, Froncek 2017). Let G be a connected bipartite unicyclic graph with
eight vertices and eight edges other than C8. Then G forms a decomposition of Kn if and only if
n ≡ 0, 1 (mod 16) and n ≥ 16.

3. Tools and methods

The major tool we use is the ρ-labeling, first defined by Rosa [8], although he originally used
the term valuation.

Definition 3.1. Let G be a graph with n edges. A ρ-labeling of G is an injection f : V (G) →
{0, 1, . . . , 2n} inducing the length function ` : E(G)→ {1, 2, . . . , n} defined as

`(uv) = min{|f(u)− f(v)|, 2n+ 1− |f(u)− f(v)|}

with the property that
{`(uv) : uv ∈ E(G)} = {1, 2, . . . , n} .
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A more restrictive version is the σ-labeling, also introduced by Rosa in [8].

Definition 3.2. LetG be a graph. A σ-labeling ofG is a ρ-labeling such that `(uv) = |f(u)−f(v)|.
Rosa [8] proved that if a graph G with n edges has one of the above labelings, then a decom-

position of a complete graph K2n+1 exists.

Theorem 3.1 (Rosa 1967). A cyclic decomposition of the complete graph K2n+1 into subgraphs
isomorphic to a given graph G with n edges exists if and only if there exists a ρ-labeling of the
graph G.

The above labelings enable isomorphic decompositions of complete graphs of odd order, but
similar methods exist for complete graphs of even order under certain circumstances. It is well
known that certain ρ-labeled graphs can form isomorphic decompositions of K2nk (see, e.g., [4]).
Although the proof of the theorem is well-known, we repeat it here for the reader’s convenience.

Theorem 3.2. Let G be a graph with n edges and let v be a vertex of degree 1 in G. If G− v has
a ρ-labeling, then G forms a one-rotational isomorphic decomposition of K2n.

Proof. Let uv be the only edge incident with vertex v in G. We denote the vertices of K2n as
x1, x2, . . . , x2n.

Because G − v allows a ρ-labeling, by Theorem 3.2 there exists a cyclic decomposition of
K2n − x2n into 2n − 1 copies of the graph G − v. Call them G′1, G

′
2, . . . , G

′
2n−1. We can assume

without loss of generality that in the i-th copy of G − v, G′i, the vertex u is mapped onto xi, and
identify v with x2n. Then for each i = 1, 2, . . . , 2n − 1, the edge xix2n of K2n appears exactly in
one copy of G − v, namely in G′i. Obviously, adding the edge xix2n = uv to the appropriate G′i,
we obtain a G-decomposition of K2n. The length of uv will be denoted by∞.

For bipartite graphs, Rosa also found another labeling (called α-labeling) that allows decompo-
sitions of larger complete graphs, namely K2nk+1 for any positive integer k. This labeling cannot
be used for graphs with odd cycles. However, one can observe that all unicyclic graphs are almost
bipartite, that is, we can obtain a bipartite graph by removing a single edge. Blinco, El-Zanati,
and Vanden Eynden [1] provide a similar tool, γ-labeling, that allows decomposition of K2nk+1

into almost bipartite graphs. Even more powerful labeling for tripartite graphs, called tripartite
ρ-labeling, was later found by Bunge, Chantasartrassmee, El-Zanati, and Vanden Eynden [2].

It would be probably possible to find a γ- or tripartite ρ-labeling for most or all of the graphs
we are focusing on, but even then we would have to use another method for decompositions of
K2nk. Therefore, we decided to use a different approach that will cover decompositions of both
K2nk+1 and K2nk concurrently.

We will find a σ-labeling for a graph H satisfying assumptions of Theorem 3.2 that can be
decomposed into k copies of G, where G is a connected unicyclic graph with 8 edges containing
a pentagon. Because we use a σ-labeling rather than ρ-labeling, the lengths of edges are always
computed as `(uw) = |f(u) − f(w)| regardless of whether we are using the lengths with respect
to K2n+1 or K2n−1 and we can replace the longest edge uv by the edge of length∞.

We formalize the method in the following observation.
Proposition 3.3. Let H be a graph decomposable into k copies of a graph G and there exists an
H-decomposition of Km. Then there also exists a G-decomposition of Km.
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4. Graphs with pentagon

The necessary condition for Kn to be decomposable into k copies of a graph with 8 edges is
that 8k divides n(n−1)/2, the number of edges in Kn. This is only true when n ≡ 0, 1 (mod 16).

First we provide a catalog of all connected unicyclic graphs on 8 edges with a pentagon. By
G(b1, . . . , b5; t) we denote such graph with trees on bi edges attached to some of the five vertices
of the pentagon; the parameter t just distinguishes between non-isomorphic graphs with the same
five-tuple b1, . . . , b5.

G(1, 1, 1, 0, 0) G(1, 1, 0, 1, 0)

G(2, 1, 0, 0, 0; s) G(2, 1, 0, 0, 0; p)

G(2, 0, 1, 0, 0; s) G(2, 0, 1, 0, 0; p)

G(3, 0, 0, 0, 0, s) G(3, 0, 0, 0, 0, p)

G(3, 0, 0, 0, 0, f) G(3, 0, 0, 0, 0,m)

Figure 3: Connected unicyclic graphs with 8 edges and pentagon
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Now for every k ≥ 1 and each G(b1, b2, . . . , b5; t) we need to find a graph Hk(b1, . . . , b5; t)
with 8k edges such that

(i) Hk(b1, b2, . . . , b5; t) is decomposable into k edge-disjoint copies of
G(b1, b2, . . . , b5; t),

(ii) Hk(b1, b2, . . . , b5; t) allows a σ-labeling,

(iii) the longest edge of length 8k has an end-vertex of degree one, and

(iv) the largest label we use is 16k − 2.

While for n = 16k + 1 we could use even labels 16k − 1 and 16k (which is the largest label
in K16k+1), for n = 16k the vertex x16k is labeled ∞ and for x1, x2, . . . , x16k−1 we use labels
0, 1, . . . , 16k − 2.

Construction 4.1 (k ≥ 2). We first label the pentagons with one attached edge as shown in Fig-
ure 4. Vertex labels are in blue, edge lengths in red. Notice that in the k-th copy Gk the largest
label is not exceeding 16k − 2, which is the maximum allowed in K16k.

1

0 4k + 4i− 1

4k + 4i− 3

2k + 2i− 1

8k + 8i− 6

4k + 4i− 1

4k + 4i− 22k + 2i− 1

2k + 2i− 2

4k + 4i− 4 4k + 4i− 3

Figure 4: Pentagon with pendant edge in k-th copy

The range of edge lengths used in these subgraphs is from 2k to 8k− 1. The remaining lengths
1, 2, . . . , 2k − 1 and 8k will be used for the additional edges.

Now we list the remaining edges for the particular graphs. Notice that while the first k − 1
graphs G1, G2, . . . , Gk−1 always follow the same pattern, the last copy Gk is different, since we
need the longest edge to have one end-vertex of degree one. When k = 1, we just disregard the
first two rows and read only the rows for Gk.

The asterisk denotes that the vertex label or edge length needs to be replaced by∞ for decom-
positions of K16.
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Graph G(1, 1, 1, 0, 0)

G(1, 1, 1, 0, 0) vertex label vertex label edge length
Gi, i ≤ k − 1 2k + 2i− 1 2k + 3i i+ 1
Gi, i ≤ k − 1 0 k + i k + i

Gk 4k − 1 4k 1
Gk 0 8k∗ 8k∗

Graph G(1, 1, 0, 1, 0)

G(1, 1, 1, 0, 0) vertex label vertex label edge length
Gi, i ≤ k − 1 4k + 4i− 1 4k + 5i i+ 1
Gi, i ≤ k − 1 0 k + i k + i

Gk 1 2 1
Gk 0 8k∗ 8k∗

Graphs G(2, 1, 0, 0, 0)

G(2, 1, 0, 0, 0; s) vertex label vertex label edge length
Gi, i ≤ k − 1 2k + 2i− 1 2k + 3i i+ 1
Gi, i ≤ k − 1 4k + 4i− 3 5k + 5i− 3 k + i

Gk 4k − 1 4k 1
Gk 8k − 3 16k − 3∗ 8k∗

G(2, 1, 0, 0, 0; p) vertex label vertex label edge length
Gi, i ≤ k − 1 2k + 2i− 1 2k + 3i i+ 1
Gi, i ≤ k − 1 7k + 6i− 5 8k + 7i− 5 k + i

Gk 16k − 6 16k − 7 1
Gk 4k − 1 12k − 1∗ 8k∗

Graphs G(2, 0, 1, 0, 0)

G(2, 0, 1, 0, 0; s) vertex label vertex label edge length
Gi, i ≤ k − 1 0 i+ 1 i+ 1
Gi, i ≤ k − 1 4k + 4i− 3 5k + 5i− 3 k + i

Gk 8k − 1 8k 1
Gk 8k − 3 16k − 3∗ 8k∗

G(2, 0, 1, 0, 0; p) vertex label vertex label edge length
Gi, i ≤ k − 1 2k + 2i− 1 2k + 4i− 1 i+ 1
Gi, i ≤ k − 1 7k + 6i− 5 8k + 8i− 6 k + i

Gk 16k − 6 16k − 7 1
Gk 4k − 1 12k − 1∗ 8k∗
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Graphs G(3, 0, 0, 0, 0)

G(3, 0, 0, 0, 0; s) vertex label vertex label edge length
Gi, i ≤ k − 1 4k + 4i− 3 4k + 3i− 4 i+ 1
Gi, i ≤ k − 1 4k + 4i− 3 3k + 3i− 3 k + i

Gk 8k − 3 8k − 4 1
Gk 8k − 3 16k − 3∗ 8k∗

G(3, 0, 0, 0, 0; f) vertex label vertex label edge length
Gi, i ≤ k − 1 8k + 8i− 6 8k + 7i− 7 i+ 1
Gi, i ≤ k − 1 8k + 8i− 6 7k + 7i− 6 k + i

Gk 16k − 6 16k − 7 1
Gk 16k − 6 8k − 6∗ 8k∗

G(3, 0, 0, 0, 0;m) vertex label vertex label edge length
Gi, i ≤ k − 1 4k + 4i− 3 4k + 3i− 4 i+ 1
Gi, i ≤ k − 1 8k + 8i− 6 7k + 7i− 6 k + i

Gk 8k − 3 8k − 4 1
Gk 16k − 6 8k − 6∗ 8k∗

For the last graph G(3, 0, 0, 0, 0; p) where the path is attached to the pentagon at its end-vertex, the
labeling shown in Figure 4 needs to be changed slightly. Namely, the vertex labeled 2k+2i−1 = 3
needs to be labeled 2k + 2i − 2 = 2 instead. The edges incident with that vertex just swap their
lengths, as we now have edges 02 of length 2 and 25 of length 3 rather than 03 of length 3 and 35
of length 2.

G(3, 0, 0, 0, 0; p) vertex label vertex label edge length
Gi, i ≤ k − 1 8k + 8i− 6 7k + 7i− 6 k + i
Gi, i ≤ k − 1 7k + 7i− 6 7k + 8i− 5 i+ 1

Gk 16k − 6 16k − 5 1
Gk 16k − 5 8k − 5∗ 8k∗

Thus we have shown that for every connected unicyclic graph G(b1, b2, . . . , b5; t) on eight edges
with a pentagon and every k ≥ 1 there exists a corresponding graph H(b1, b2, . . . , b5; t) decompos-
able into k copies of G(b1, b2, . . . , b5; t) with a σ-labeling and longest edge having an end-vertex
of degree one.

Our main result now follows easily.

Theorem 4.1. Let G be a connected unicyclic graph with eight vertices and eight edges where the
unique cycle is a pentagon. Then G forms a decomposition of Kn if and only if n ≡ 0, 1 (mod 16)
and n ≥ 16.
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Proof. By Construction 4.1, for every connected unicyclic graph on eight edges with a pentagon
G(b1, b2, . . . , b5; t) and every k ≥ 1 there exists a corresponding graph H(b1, b2, . . . , b5; t) decom-
posable into k copies of the graph G(b1, b2, . . . , b5; t). Moreover, each such H(b1, b2, . . . , b5; t) has
a σ-labeling and the longest edge has an end-vertex of degree one.

Thus, by Theorems 3.1 and 3.2, each H(b1, b2, . . . , b5; t) decomposes Kn for every n ≡ 0, 1
(mod 16) and n ≥ 16. Because each H(b1, b2, . . . , b5; t) is decomposable into k copies of the
corresponding graph G(b1, b2, . . . , b5; t), the result now follows by Proposition 3.3.

5. Conclusion

In this paper, we have taken further steps to the complete characterization of graphs with eight
edges decomposing complete graphs. We have completely solved the problem of decomposition
of the complete graph Kn into connected unicyclic graphs with eight edges and the unique cycle
having length five.

In an earlier paper, Fahnenstiel and Froncek [5] solved analogical problem for connected bipar-
tite unicyclic graphs with eight edges. The remaining cases of unicyclic graphs with eight edges,
both connected and disconnected, have been recently solved by Freyberg and Froncek [6]. Thus,
the class of unicyclic graphs with eight edges has been completely classified.
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