INDONESIAN JOURNAL
OF COMBINATORICS

Computing the split domination number of grid graphs

V. R. Girish ${ }^{\text {a }}$, P. Usha ${ }^{\text {b }}$
${ }^{a}$ Department of Science and Humanities,PES University(EC Campus),
Electronic City, Bengaluru, Karnataka, India
${ }^{b}$ Department of Mathematics, Siddaganga Institue of Technology, Tumakuru, Karnataka, India
girishvr1@pes.edu, ushapmurhty@gmail.com

Abstract

A set $D \subseteq V$ is a dominating set of G if every vertex in $V-D$ is adjacent to some vertex in D. The dominating number $\gamma(G)$ of G is the minimum cardinality of a dominating set D. A dominating set D of a graph $G=(V, E)$ is a split dominating set if the induced graph $\langle V-D\rangle$ is disconnected. The split domination number $\gamma_{s}(G)$ is the minimum cardinality of a split domination set. In this paper we have introduced a new method to obtain the split domination number of grid graphs by partitioning the vertex set in terms of star graphs and also we have obtained the exact values of $\gamma_{s}\left(G_{m, n}\right), m \leq n, m, n \leq 24$.

Keywords: separate, domination number, split domination, grid graph, star graph
Mathematics Subject Classification: 05C69
DOI: 10.19184/ijc.2021.5.1.1

1. Introduction

The graphs considered here are finite, connected, undirected without loops or multiple edges and without isolated vertices. As usual n and q denote the number of vertices and edges of a graph G. For any undefined term or notation in this paper can be found in Harary [2].

A set $D \subseteq V$ is a dominating set of G if every vertex in $V-D$ is adjacent to some vertex in D. The dominating number $\gamma(G)$ of G is the minimum cardinality of a dominating set D [5]. V.R.

Received: 19 September 2018, Revised: 13 December 2020, Accepted: 15 March 2021.

Kulli and B. Janakiram had introduced a concept of split domination [3]. A dominating set D of a graph $G=(V, E)$ is a split dominating set, if the induced graph $\langle V-D\rangle$ is disconnected. The split domination number $\gamma_{s}(G)$ is the minimum cardinality of a split domination set.

A two dimensional grid graph $G_{m, n}$ is the graph Cartesian product $P_{m} \times P_{n}$ of paths on m and n vertices. The Cartesian graph product of $G_{1} \times G_{2}$ with disjoint vertex sets and edge sets in G_{1}, G_{2} is the graph with the vertex set $V_{1} \times V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ whenever [$u_{1}=v_{1}$ and $u_{2} \operatorname{adj} v_{2}$] or [$u_{2}=v_{2}$ and $\left.u_{1} \operatorname{adj} v_{1}\right]$. A star graph is a complete bipartite graph of the form $K_{1, n-1}$ with n vertices. The neighborhood of a vertex in the graph G is the set of vertices adjacent to v and is denoted by $N(v)$.

Computing of domination of grid graph has been studied in $[1,4]$. In this paper we have introduced a new method to obtain the split domination number of a grid graphs by partitioning the vertex set in terms of $K_{1,3}, K_{1,2}, K_{2}$ and K_{1} and also we have obtained the exact values of $\gamma_{s}\left(G_{m, n}\right), m \leq n, m, n \leq 24$.

2. Preliminaries

To simplify the description of the algorithm, we first define an order of the vertices of an $m n$ grid graph with vertices $v_{i, j}, 1 \leq i \leq m, 1 \leq j \leq n$. Every minimum dominating set can be constructed by an exhaustive search where in each step any undominated vertex is picked, after which all possible ways of dominating this vertex are considered in turn.

The procedure to construct the minimum split dominating set is as follows:
Pick the vertex of degree 3 say $v_{i}, E=v_{i} \cup N\left(v_{i}\right)$. Next choose the vertex in $V(G)-E$, that has the vertex of degree 3, if not choose the vertex of degree 2 otherwise choose the vertex of degree 1 say v_{j}, if not choose $v_{k} \in E$. Let $D=v_{i} \cup v_{j} \cup v_{k}$ such that the number of vertices in D is minimum and $<V(G)-D>$ is disconnected, this procedure is continued unless $V(G)-E$ is an empty set. Suppose if $<V(G)-D>$ is connected, then we need one more vertex to make the graph disconnected.

3. Algorithm to Find the Split Domination Number of grid graph by partitioning the vertex set.

Step 1: Divide the grid graph $G_{m, n}$ by partitioning the vertex set in terms $K_{1,3}, K_{1,2}, K_{1,1}$ and K_{1} such that
(i) Partitioning $A=\left\{P_{1}, P_{2}, P_{3} \ldots \ldots P_{n}\right\}$ is minimum.
(ii) $<V\left(P_{1}\right)>\cap<V\left(P_{2}\right)>\cap \ldots \ldots \ldots . \cap<V\left(P_{n}\right)>=\phi$ and $v_{1} \in<V\left(P_{1}\right)>$, $v_{2} \in<V\left(P_{2}\right)>$ if $\operatorname{deg}\left(v_{1}\right)$ is maximum in $<V\left(P_{1}\right)>$ and $v_{2} \notin N\left(v_{1}\right)$ in $G_{m, n}$.
(iii) $E\left(P_{1}\right) \cap E\left(P_{2}\right)=\phi, E\left(P_{1}\right)$ is the edges in $\left\langle V\left(P_{1}\right)\right\rangle$.

Step 2: Suppose A contains atleast two partition set say P_{1}, P_{2} such that $<V\left(P_{1}\right)>=K_{1}$ and $<V\left(P_{2}\right)>=K_{1}$ and $H=\left\{v_{c} \in N\left(V\left(P_{1}\right) \cap V\left(P_{2}\right)\right)\right.$ in $\left.G_{m, n}\right\}, A=\left\{A-\left\{P_{1}, P_{2}\right\}\right\}$.

Step 3: Let $D=\left\{v_{i} \in<V\left(P_{i}\right)>, P_{i} \in A / v_{i}\right.$ is of max deg of $<V\left(P_{i}\right)>$ and $<V\left(P_{i}\right)>\neq$ $\left.K_{1,1}\right\}$

Step 4: IF A contains atleast one partition P_{j}, such that $<V\left(P_{j}\right)>=K_{1,1}$ with $<V\left(P_{j}\right)>=$ $\left\{v_{m}, v_{r}\right\}$.
GOTO STEP 5.
ELSE IF $H=\phi$
$C=D$
ELSE
$C=D \cup H$
GOTO STEP 7.
Step 5: For each partition P_{j}.
IF atleast one vertex say $v_{s}, v_{s} \in N\left(v_{m}\right), v_{s} \notin<V\left(P_{j}\right)>$ and $N\left(v_{s}\right)-\left\{v_{m}\right\} \in D$.
$\left\{v_{m}\right\} \in S$.
ELSE
$\left\{v_{m}\right\}$ or $\left\{v_{r}\right\} \in S$.
GOTO STEP 5.
Let S be the set of all such vertices.
Step 6: IF $H=\phi$ and $S=\phi$
$C=D$
ELSE IF $H=\phi$ and $S \neq \phi$
$C=D \cup S$.
ELSE
$C=D \cup S \cup H$.
Step 7: Find the split adjacency matrix

$$
a_{i j}=\left\{\begin{array}{cc}
v_{i j}=1 & v_{i} \text { is adjacent to } v_{j} \text { and } v_{i} \notin C \\
v_{i j}=0 & \text { Otherwise. }
\end{array}\right.
$$

Step 8: IF $a_{i j}$ contains atleast one zero row then, $\gamma_{s}=|C|$
GOTO STEP 11.
ELSE
GOTO STEP 9.
Step 9: Let $\left\{v_{k}\right\}$ is the row in $a_{i j}$ in which sum of all the elements in $\left\{v_{k}\right\}=1$ and 1 is present in v_{p} column.

Step 10: $\gamma_{s}=|C|+\left|\left\{v_{p}\right\}\right|=|C|+1$.
Step 11: END

4. Examples

$$
\begin{aligned}
& A=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{6}\right\} \\
& D=\left\{v_{2}, v_{11}, v_{9}, v_{18}, v_{5}\right\}
\end{aligned}
$$

Figure 1. A grid graph $G_{4,5}$
For partition $P_{5}, v_{s}=v_{10}, v_{m}=15, S=\left\{v_{15}\right\}$

$$
C=D \cup S=\left\{v_{2}, v_{11}, v_{9}, v_{18}, v_{5}, v_{15}\right\}
$$

The Split adjacent matrix $a_{i j}$ is:

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}	v_{15}	v_{16}	v_{17}	v_{18}	v_{19}	v_{20}
v_{1}	(0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v_{2}	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
v_{3}	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
v_{4}	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v_{5}	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
v_{6}	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
v_{7}	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	0
v_{8}	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
v_{9}	0	0	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0
v_{10}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v_{11}	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0
v_{12}	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0
v_{13}	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0
v_{14}	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
v_{15}	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
v_{18}	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0		0	0	1
v_{20}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Since there exists a zero row v_{10} in $a_{i j}$. therefore the split domination number $\gamma_{s}=|C|=6$.

Figure 2. A grid graph $G_{3,6}$

$$
\begin{gathered}
A=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}\right\} \\
\text { Since }<V\left(P_{5}\right)>\text { and }<V\left(P_{6}\right)>=K_{1} \text { and } H=\left\{v_{c}=v_{12}\right\} \\
A=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{7}\right\} \\
D=\left\{v_{3}, v_{6}, v_{7}, v_{14}, v_{16}\right\} \\
C=D \cup H=\left\{v_{3}, v_{6}, v_{7}, v_{14}, v_{16}, v_{12}\right\}
\end{gathered}
$$

The Split adjacent matrix $a_{i j}$ is:

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}	v_{15}	v_{16}	v_{17}	v_{18}
v_{1}	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v_{2}	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
v_{3}	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
v_{4}	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
v_{5}	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
v_{6}	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
v_{7}	1	0	0	0	0	0	0	1	0	0		0	1	0	0	0	0	0
v_{8}	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
v_{9}	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0
v_{10}	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0
v_{11}	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0
v_{12}	20	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
v	30	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
v_{14}	4	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0
v_{1}	5	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
v_{16}	6	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0
		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0)

Since there exists a zero row v_{13} in $a_{i j}, \gamma_{s}=|C|=6$

Figure 3. A grid graph $G_{4,4}$

$$
\begin{gathered}
A=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\} \\
D=\left\{v_{3}, v_{5}, v_{12}, v_{14}\right\} \\
H=\phi \\
C=D=\left\{v_{3}, v_{5}, v_{12}, v_{14}\right\}
\end{gathered}
$$

The Split adjacent matrix $a_{i j}$ is:

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	$v 6$	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}	v_{15}	v_{16}
v_{1}	(0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v_{2}	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
v_{3}	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0
v_{4}	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
v_{5}	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
v_{6}	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0
v_{7}	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0
v_{8}	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
v_{9}	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0
v_{10}	0	0	0	0	0	1	0	0	1	0	1	0	0	0	0	0
v_{11}	0	0	0		0	0	1	0	0	1	0	0	0	0	1	0
v_{12}	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1
v_{13}	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
v_{14}	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0
v_{15}	0	0	0	0	0	0	0	0		0	1	0	0	0	0	1
	(0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Since there exists a non-zero row in $a_{i j}$ and v_{16} contains 1 in $v_{15}^{t h}$ column $=v_{p}, \gamma_{s}=|C|+1=5$

Theorem 4.1. For any grid graph $G_{m, n}$,

$$
\gamma_{s}\left(G_{m, n}\right)= \begin{cases}\gamma\left(G_{m, n}\right) & \text { if }\left\langle V\left(G_{m, n}\right)-\gamma\left(G_{m, n}\right)\right\rangle \text { is disconnected } \\ \gamma\left(G_{m, n}\right)+1 & \text { otherwise. }\end{cases}
$$

Proof. Let D be the γ-set of G.
Case 1: if $\langle V(G)-D\rangle$ is disconnected, the result follows from the definition of split dominating set.

Case 2: if $\langle V(G)-D\rangle$ is connected, then there exists atleast one vertex say v_{i} in D which is of degree 3 and $v_{i} \in N\left(v_{j}\right), v_{j}$ is of degree 2. Then $D \cup v_{k}, v_{k} \in N\left(v_{j}\right) \neq v_{i}$. Since v_{j} is of degree $2, D \cup v_{k}$ is disconnected. Hence $\gamma_{s}\left(G_{m, n}\right)=\gamma\left(G_{m, n}\right)+1$.

5. Exact values of $\gamma_{s}\left(\boldsymbol{G}_{\boldsymbol{m}, \boldsymbol{n}}\right), \boldsymbol{m} \leq \boldsymbol{n}$.

The exact values of $\gamma_{s}\left(G_{m, n}\right)$ are obtained by using Theorem 4.1 and $[1,4]$

$$
\begin{aligned}
& \gamma_{s}\left(G_{1, n}\right)=\left\lfloor\frac{n+2}{2}\right\rfloor \\
& \gamma_{s}\left(G_{2, n}\right)= \begin{cases}\left\lfloor\frac{n+2}{2}\right\rfloor & n \text { is even or } n=3 \\
\left\lfloor\frac{n+2}{2}\right\rfloor+1 & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{3, n}\right)= \begin{cases}\left\lfloor\frac{3 n+4}{4}\right\rfloor & n \equiv 0(\bmod 4) \text { orn }=3 \\
\left\lfloor\frac{3 n+4}{4}\right\rfloor+1 & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{4, n}\right)=n+1 . \\
& \gamma_{s}\left(G_{5, n}\right)= \begin{cases}\frac{6 n+13}{5} & n=5 p+2, p \geq 2 \\
\left\lceil\frac{6 n+8}{5}\right\rceil & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{6, n}\right)= \begin{cases}\left\lceil\frac{10 n+10}{7}\right\rceil & n \equiv 1(\bmod 7) \\
\frac{10 n+19}{7} & n=7 p+3, p \geq 1 \\
\left\lceil\frac{10 n+12}{7}\right\rceil & \text { otherwise }\end{cases} \\
& \gamma_{s}\left(G_{7, n}\right)= \begin{cases}\frac{5 n+6}{3} & n=3 p, p \geq 3 \\
\left\lceil\frac{5 n+3}{3}\right\rceil & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{8, n}\right)= \begin{cases}\frac{15 n+22}{8} & \quad n=8 p+6, p \geq 1 \\
\left\lceil\frac{15 n+14}{8}\right\rceil & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{9, n}\right)= \begin{cases}\frac{23 n+31}{11} & n=11 p+2, p \geq 1 \\
\left\lceil\frac{2 n+20}{11}\right\rceil & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{10, n}\right)= \begin{cases}\left\lceil\frac{30 n+37}{13}\right\rceil & n \neq 13,16, n \equiv 0,3(\bmod 13), n=13 p+7, p \geq 1 \\
\left\lceil\frac{30 n+24}{13}\right\rceil & \text { otherwise } .\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{s}\left(G_{11, n}\right)= \begin{cases}\left\lceil\frac{38 n+21}{15}\right\rceil & n=11,20,22 \\
\frac{38 n+51}{15} & n=15 p+3, p \geq 3 \\
\left\lceil\frac{\lceil 8 n+36}{15}\right\rceil & \text { otherwise } .\end{cases} \\
& \gamma_{s}\left(G_{12, n}\right)= \begin{cases}\frac{80 n+95}{29} & n=29 p-3, p \geq 1 \\
\left\lceil\frac{80 n+66}{29}\right\rceil & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{13, n}\right)= \begin{cases}\left\lceil\frac{98 n+111}{33}\right\rceil & n \equiv 14,15,17,20(\bmod 33), n=33 p+12, p \geq 1 \\
\left\lceil\frac{98 n+78}{33}\right\rceil & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{14, n}\right)= \begin{cases}\left\lceil\frac{35 n+40}{511}\right\rceil & n \equiv 18(\bmod 22), n=11 p+13, p \geq 1 \\
\left\lceil\frac{3 n+29}{11}\right\rceil & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{15, n}\right)= \begin{cases}\left\lceil\frac{44 n+27}{13}\right\rceil+1 & n \equiv 5(\bmod 26), \\
\frac{44+53}{13} & n=13 p+5, p \geq 1 \\
\left\lceil\frac{4 n+40}{13}\right\rceil & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{16, n}\right)= \begin{cases}\frac{18 n+21}{5} & n=5 p+13, p \geq 1 \\
\left\lceil\frac{18 n+36}{5}\right\rceil-4 & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{17, n}\right)= \begin{cases}\frac{19 n+23}{5} & n=5 p+13, p \geq 1 \\
\left\lceil\frac{19 n+38}{5}\right\rceil-4 & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{18, n}\right)=4 n+5 . \\
& \gamma_{s}\left(G_{19, n}\right)= \begin{cases}\frac{21 n+27}{5} & n=5 p+13, p \geq 2 \\
\left\lceil\frac{21 n+42}{5}\right\rceil-4 & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{20, n}\right)= \begin{cases}\frac{22 n+29}{5} & n=5 p+13, p \geq 2 \\
\left\lceil\frac{22 n+44}{5}\right\rceil-4 & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{21, n}\right)= \begin{cases}\frac{23 n+31}{5} & n=5 p+13, p \geq 2 \\
\left\lceil\frac{23 n+46}{5}\right\rceil-4 & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{22, n}\right)= \begin{cases}\frac{24 n+33}{5} & n=5 p+13, p \geq 2 \\
\left\lceil\frac{24 n+48}{5}\right\rceil-4 & \text { otherwise. }\end{cases} \\
& \gamma_{s}\left(G_{23, n}\right)=5 n+7 . \\
& \gamma_{s}\left(G_{24, n}\right)= \begin{cases}\frac{26 n+37}{5} & n=5 p+13, p \geq 3 \\
\left\lceil\frac{26 n+52}{5}\right\rceil-4 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Table 1. Split domination numbers $\gamma_{s}\left(G_{m, n}\right), m, n \leq 25$

m / n		2	3	4	5	6	7	8				111	1213	314	415	51	161			19	2	21	22	23	2	
1	-	-	-	-	-	-	-	-		-	-	-	- -	-	-		- -		-	-	-	-	-	-	-	-
2		2																								
3		2	3																							
4		3	4	5																						
5		4	5	6	8																					
6	2	4	6	7	9																					
7	3	5	7	8	10	12	13																			
8	3	5	7	9	12	13	15	1																		
9	3	6	8	10	13	15	17	1	9																	
10	4	6	9	11	14	17	718	2	1	3																
11	4	7	10	12	15	18	820	2	3	5	28															
12		7	10	13	17	19	22	2	5	7	30	3336														
13	5	8	11	14	18	21	123	2	7	0	32	363	3941													
14		8	12	15	19	22	25	2		2	35	384	4145	548												
15	5	9	13	16	20	23	27	3		4	37	414	4448	851	15											
16	6	9	13	17	21	25	28	3	32	6	39	434	4750	554	458	86										
17		10	14	18	23	27	30	3	438	8	42	4650	5054	557	761	16	656									
18		10	15	19	24	28	32	3	6	0	44	485	5256	661	165	56	697	3								
19		11	16	20	25	29	33	3	8	2	46	515	5559	596	468	87	7276	6	81	85						
20		11	16	21	26	31	135	4		4	49	535	5863	6367	771	176	768	0	85	89	93					
21		12	17	22	27	32	37	4	2	6	51	566	6165	5570	75	779	798	4	89	93						
22		12	18	23	29	33	38	4		8	53	586	6368	8873	378	88	838	8	93	97		107	112			
23		13	19	24	30	35	540	4	55	0	55	616	6671	176	681	18	879	2				112	117			
24	8	13	19	25	31	37	42	4	-	35	58	646	6974	480		59	909			106			121	127	13	
25		14	20	26	32	38	4	4	95	5	60	667	7277	783	388	89	949			110	115	121	126	132	13	

References

[1] D. Goncalves, A. Pinlou, M. Rao and S. Thomasse, The domination of grid graph, SIAM J. Discrete Math. 25(3) (2011), 1443-1453.
[2] F. Harary, Graph Theory, Addison-wesley. reading Mass (1969).
[3] V. R. Kulli, B. Janikiram, The split domination number of a graph, Graph Theory Notes of New York Academy of Sciences. XXXII (1997), 16-19.
[4] S. Alanko, A. Isopoussu, P. Ostergard, and V. Pettersson, Computing the domination number of grid graphs, Electron. J. Combin. 18 (2011), P141.
[5] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. Newyork (1988).

