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Abstract

Let ∆G be the maximum degree of a simple connected graph G(V,E). An injective mapping
P : V → R∆G is said to be an orthogonal labeling of G if uv, uw ∈ E implies (P (v) − P (u)) ·
(P (w) − P (u)) = 0, where · is the usual dot product defined in Euclidean space. A graph G
which has an orthogonal labeling is called an orthogonal graph. This labeling is motivated by
the existence of some labelings defined on some algebraic structure, i.e. harmonious labeling
and group distance magic labeling. In this paper we study some preliminary results on orthogonal
labeling. One of the early results is the fact that cycles with even number of vertices are orthogonal,
while cycles with odd number of vertices are not. The main results in this paper state that any graph
containingK3 as a subgraph is non-orthogonal and that a graphG′ obtained from adding a pendant
to a vertex in an orthogonal graph G is orthogonal. Moreover, we show that any tree is orthogonal.
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1. Introduction

A general definition of labeling of a graph is a map that carries some set of graph elements
to set of numbers such that a certain condition is fulfilled. For example, magic labeling is a one-
to-one map onto the appropriate set of consecutive integers starting from 1, with some kind of
“constant-sum” property. We can find other examples on [4]. Moreover, there are some labelings
which map to a general set. An example that satisfies this condition is harmonious labeling, which
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maps the set of vertices to Z|V |. Froncek in [3] and Cichacz in [2] worked on group distance magic
labeling which maps vertices to a finite group.

Inspired by these examples, we define a labeling that maps the set of vertices to Euclidean
space Rn and call this labeling: orthogonal labeling. A graph G that has an orthogonal labeling
is called an orthogonal graph. This labeling has some similarities with the n−cube graph which
we show latter that it is indeed an orthogonal graph. Note that orthogonal labeling is also used in
different meaning such as in connection with orthogonal double covers. See for example [5]. The
main purpose of this paper is to introduce this labeling and some preliminaries results.

2. Orthogonal Labeling

Let ∆G be the maximum degree of a simple connected graph G(V,E). An orthogonal labeling
is a mapping P : V → R∆G such that if uv, uw ∈ E, then the images of u, v, w, which are
P (u), P (v), P (w), are vectors in R∆G such that the vector P (v)− P (u) is orthogonal to P (w)−
P (u). This leads us to a more formal definition.

Definition 1. Let G(V,E) be a simple connected graph. An injective mapping P : V → R∆G is
said to be an orthogonal labeling of G if uv, uw ∈ E implies (P (v)−P (u)) · (P (w)−P (u)) = 0,
where · is the usual dot product defined in the Euclidean space R∆G . A graph G which has an
orthogonal labeling is said to be orthogonal. A non-orthogonal graph is a graph that does not
have an orthogonal labeling.

For the sake of convenience, we say that a graph that consists of a single vertex is orthogonal.
It is obvious that the graph C4 is orthogonal. Let V (C4) = {v1, v2, v3, v4} and E(C4) =

{vivi+1 : i = 1, 2, 3, 4}, where v5 is defined to be v1. Since ∆C4 = 2, then the injective mapping
P : V (C4)→ R2 defined by P (v1) = (0, 0), P (v2) = (1, 0), P (v3) = (1, 1), and P (v4) = (0, 1) is
obviously an orthogonal labeling of C4.

Since orthogonality with respect to usual dot product in Euclidean space is the same as perpen-
dicularity whenever the space is Rn, n = 1, 2, 3, then we can induce an orthogonal labeling from
drawing the graph in Rn such that each pair of edges that incident to a same vertex is perpendicular
to each other. Thus, by drawing C4 as a square in R2, it is obvious that C4 is orthogonal.

For simplicity we will use Pv to denote P (v).

3. Some Results on Orthogonal Graphs

The graph C4 can also be seen as a special case of n-cube graph Qn, in this case n = 2. The
hypercube or n-cube Qn is defined as K2 if n = 1, and

Qn = Qn−1 ×K2 if n ≥ 2.

It can be easily seen that Qn is a regular graph of degree n and has 2n vertices.
The cubes Q1, Q2, and Q3 can simply be drawn as a line segment, a square, and a cube [1].

From earlier discussion we know that those drawings show that Q1, Q2, and Q3 are orthogonal.
The cube Q4 is shown in Figure 1.
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Figure 1. 4-cube, Q4

A better way to describe the n-cube is to represent its vertex set by the collection of all n-tuples,
where each coordinate of the n-tuple is 0 or 1, and where two vertices of Qn are adjacent if and
only if corresponding n-tuples differ in exactly one coordinate. Figure 1 above shows the labeling
of the vertices ofQn for n = 4. The way of representing the vertices ofQn as n-tuples as described
above induces an orthogonal labeling. We argue that it is indeed an orthogonal labeling.

Since each vertex in Qn has a unique representation in n-tuples, we know that this mapping
is injective. Let u, v, w ∈ V (Qn) such that uv, uw ∈ E(Qn) and let pu, pv, pw be the n-tuple
representations of u, v, w respectively. Since two vertices of Qn are adjacent if and only if corre-
sponding n-tuples differ in exactly one coordinate, then (pv − pu), (pw − pu) must be unit vectors
that have value 1 or −1 in exactly one coordinate. This implies (pv − pu) · (pw − pu) = 0. Thus
we have proved the following theorem.

Theorem 3.1. The n-cube graph Qn is orthogonal for all n ∈ N.

We have shown that C4 is orthogonal.In general, C2k is orthogonal for any natural number
k ≥ 2.

Theorem 3.2. C2k is orthogonal, k ∈ N, k ≥ 2.

Proof. Suppose that V (C2k) = {vi : i = 0, 1, 2, . . . , 2k − 1} and E(C2k) = {vivi+1 : i =
0, 1, 2, . . . , 2k−1}, where v2k = v0. We know that ∆C2k

= 2. Define a mapping P : V (C2k)→ R2

as follows:
P (v2r+1) = p2r+1 = (r, k − r − 1), for r = 0, 1, 2, . . . , k − 1

P (v2r) = p2r = (r, k − r), for r = 1, 2, . . . , k − 1

p0 = (0, 0)

Notice that the first coordinates of p2i and p2j+1 are equal if and only if i = j. Despite the equality
of first coordinates of p2r and p2r+1, we can see that the odd-even parity of the second coordinates
must be different or differ by k. Since the first coordinates of p2r and p2r+1 are strictly increasing
functions of r, we can deduce that P is an injective function.
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We see that

(p2k−1 − p0) · (p1 − p0) = p2k−1 · p1 = (k − 1, 0) · (0, k − 1) = 0,

(p0 − p1) · (p2 − p1) = (0,−k + 1) · (1, 0) = 0,

(p0 − p2k−1) · (p2k−2 − p2k−1) = (−k + 1, 0) · (0, 1) = 0,

(p2r+1 − p2r) · (p2(r−1)+1 − p2r) = (0,−1) · (1, 0) = 0, for r = 1, 2, . . . , k − 1,

and, (p2(r+1) − p2r+1) · (p2r − p2r+1) = (1, 0) · (0, 1) = 0, for r = 2, 3, . . . , k − 2

Since all the dot products are zero, we conclude that P is indeed an orthogonal labeling on C2k.
Therefore C2k is orthogonal.

Intuitively we know that C2k+1 is non-orthogonal for all natural number k. It is true and we
can show it using the fact that a simple connected graph with ∆ ≤ 3 is orthogonal if and only if it
can be drawn such that all edges sharing an endpoint are pairwise perpendicular in R∆.

Theorem 3.3. C2k+1 is non-orthogonal for all natural number k.

Proof. Suppose on the contrary that C2k+1 is orthogonal, then we can draw it on R2 such that
all edges sharing an endpoints are pairwise perpendicular. Without loss of generality assume that
the first edge is drawn horizontally. In order to maintain the perpendicularity we need to have
the second edge and the (2k + 1)st edge to be drawn vertically. Since the second edge is drawn
vertically, we need the third edge to be drawn horizontally. Continuing this argument will lead us
to a conclusion that (2r + 1)st edge must be drawn horizontally for r = 0, 1, 2, . . . , k. But this
contradicts the fact that the (2k+1)st edge is drawn vertically. Therefore C2k+1 is non-orthogonal.

On the theory of planar graphs, we know that if a graph G has a subgraph that is not planar
then neither is G. However, if a simple connected graph G has a non-orthogonal simple connected
subgraph G′, then it is not necessarily true that G must be orthogonal.

Let G be the graph C5 with one additional vertex v0 that is adjacent to exactly one vertex of
C5. We have V (G) = {vi : i = 0, 1, . . . , 5} and E(G) = {vivi+1 : i = 0, 1, . . . , 5}, where
v6 = v1. It is clear that ∆G = 3. Defined P : V (G)→ R3 by p0 = (0, 0, 1), p1 = (0, 0, 0), p2 =
(1, 0, 0), p3 = (1, 1, 0), p4 = (1, 1, 1), and p5 = (0, 0, 1), where P (vi) = pi, i = 0, 1, . . . , 5.
It is easily seen that P is injective. Notice that

(p0 − p1) · (p2 − p1) = (0, 0, 1) · (1, 0 , 0) = 0,

(p0 − p1) · (p5 − p1) = (0, 0, 1) · (0, 0 , 1) = 0,

(p2 − p1) · (p5 − p1) = (0, 1, 0) · (0, 0 , 1) = 0,

(p1 − p2) · (p3 − p2) = (−1, 0, 0) · (0, 1, 0) = 0,

(p4 − p3) · (p2 − p3) = (0, 0, 1) · (0, −1, 0) = 0,
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(p5 − p4) · (p3 − p4) = (−1, −1, 0) · (0, 0, −1) = 0, and

(p1 − p5) · (p4 − p5) = (0, 0, −1) · (1, 1, 0) = 0.

Thus we can conclude that P is an orthogonal labeling of G. We can generally prove this result
if the C5 is substituted by Cn, n > 3 in a similar fashion.

Theorem 3.4. Let G be a graph obtained from adding a pendant to Cn. Then G is orthogonal.

Proof. Let V (G) = {vi : i = 0, 1, . . . , n} and E(G) = {vivi+1 : i = 0, 1, . . . , n}, where
vn+1 = v1. It is obvious that ∆G = 3. Define a mapping P : V (G)→ R3 by

p0 = (0, 0, 1), p1 = (0, 0, 0),

p2k = p2k−1 + (1, 0, 0), 1 ≤ k ≤ n− 1

2
,

p2k+1 = p2k + (0, 1, 0), 1 ≤ k ≤ n− 1

2
, and

pn = pn−1 + (0, 0, 1),

where pi = P (vi), i = 0, 1, . . . , n. It can easily be seen that v0 is the only vertex that is mapped
to (0, 0, 1) and that pi is an increasing function in i for i ∈ {1, 2, . . . n}, hence P is injective. We
can easily check that

(pi+1 − pi) · (pi−1 − pi) = 0, for i = 1, 2, . . . , n.

Thus P is an orthogonal labeling on G.

We will now prove some simple results but truly are useful to determine if a graph is non-
orthogonal.

Theorem 3.5. Let G be a simple connected graph and G′ be a connected subgraph of G, such that
∆G′ = ∆G = ∆. If G is orthogonal, then so is G′.

Proof. Let P : V (G) → R∆ be the orthogonal labeling of G. Since ∆G′ = ∆, we can defined
a labeling for V (G′) by restricting P to V (G′). Since P is injective, so is its restriction. Suppose
u, v, w ∈ V (G′) such that uv, uw ∈ E(G′). Since E(G′) ⊆ E(G), we have

(P|V (G′)(v)− P|V (G′)(u)) · (P|V (G′)(w)− P|V (G′)(u)) =

(P (v)− P (u)) · (P (w)− P (u)) = 0.

Thus proving that P|V (G′) is an orthogonal labeling of G′.

The contrapositive of Theorem 3.5 is somewhat more useful than the statement of the theorem
itself.
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Corollary 3.1. Let G be a simple connected graph and G′ be a connected subgraph of G, such
that ∆G′ = ∆G. If G′ is non-orthogonal, then so is G.

We now prove a stronger result.

Theorem 3.6. Let G be a simple connected graph. If K3 is a subgraph of G, then G is non-
orthogonal.

Proof. Suppose on the contrary G is orthogonal, then there exists an orthogonal labeling P of G.
Let vi, i = 1, 2, 3 be the vertices of the subgraph K3 of G and pi = P (vi), i = 1, 2, 3.We will have

(p2 − p1) · (p3 − p1) = 0 and

(p1 − p2) · (p3 − p2) = 0 ⇒ (p2 − p1) · (p2 − p3) = 0.

If we add these equations, we will have

(p2 − p1) · (p2 − p1) = 0 ⇒ p2 − p1 = 0 ⇒ p2 = p1.

This contradicts the fact that P is an orthogonal labeling, that is an injective function. Therefore
G must be non-orthogonal.

Theorem 3.6 works in a way such that many classes of graph can be determined to be non-
orthogonal. We state some of those classes below.

Corollary 3.2. The graphs Kn and Wn are non-orthogonal for n > 2.

We also have another corollary.

Corollary 3.3. If G is an orthogonal simple graph with cycle, then the girth of G is at least 4.

We have seen some properties that ensure the non-orthogonality of some classes of graph. Thus
we proceed to a strong lemma concerning orthogonal graph construction. This lemma is a general
result of Theorem 3.4.

Lemma 3.1. Let G be an orthogonal graph. If G′ is obtained from adding a pendant to a vertex in
G , then G′ is orthogonal.

Proof. Since G′ is obtain from adding a pendant to G so that the addition vertex is adjacent
to exactly one vertex in G, then ∆G′ = ∆G or ∆G′ = ∆G + 1. Let P : V (G) → R∆G be
the orthogonal labeling on G. We will define a mapping P ′ : V (G′) → R∆G′ so that P ′ is an
orthogonal labeling on G′. First we will define P ′ on V (G) ⊆ V (G′). If ∆G′ = ∆G , we let
P ′(v) = P (v), v ∈ V (G). If ∆G′ = ∆G + 1, we let P ′(v) = (P (v), 0), v ∈ V (G).

Let u be the vertex that is adjacent to the pendant vertex u′. It is clear that δG′(u) ≤ ∆G′ . Let
{v1, v2, . . . , vδG′ (u)−1} be the set of vertices to which u is adjacent to in G. Let pi = P ′(vi), i =
1, 2, . . . , δG′(u)− 1 and p0 = P ′(u). It suffices to assign the value of P ′(u′) satisfying (P ′(u′)−
p0) · (pi − p0) = 0, for i = 1, 2, . . . , δG′(u)− 1, so that P ′ is an orthogonal mapping on G′.

Since P is an orthogonal mapping onG, we have S = {pi−p0 : i = 1, 2, . . . , δG′(u)−1} be a
set of orthogonal vectors in R∆G′ . In view of Gram-Schmidt theorem we can have a vector p′, such
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that S ∪ {p′} is orthogonal. However, S ∪ {tp′} is still orthogonal for any non-zero real number t.
Since P ′(V (G′)) is finite, we can choose a non-zero real number t such that tp′′+p0 /∈ P ′(V (G′)).
In view of our earlier discussion above we conclude that if P ′(u′)is defined to be tp′ + p0, we will
have P ′ be an orthogonal labeling on G′.

Since hairy-cycle graphs can be obtained from adding pendants, as described in Lemma 3.10,
to graph G which is described in Theorem 3.4, we have this following theorem.

Theorem 3.7. Any hairy-cycle graph of Cn, n > 3 is orthogonal.

Further, we see that Lemma 3.1 is indeed a strong lemma. Since any tree T has at least two
vertices of degree one, we can remove one of these vertices and the edge incident to it and have
a smaller tree. Continuing this process will yield to a tree of the form K2. Retracing this process
gives us an algorithm to construct T from K2 by adding pendants successively. In view of this
argument and repeated application of Lemma 3.1, we have just proved Theorem 3.8.

Theorem 3.8. Let G be an orthogonal graph and T be a tree. If G′ is obtained from attaching the
vertex v0 of T , where δT (v0) = 1, to G so that the v0 is adjacent to exactly one vertex in G, then
G′ is orthogonal.

Let G be an orthogonal graph and T be a tree such that |V (G) ∩ V (T )| = 1. Consider the set
V (G) ∩ V (T ) = {v0} and NT (v0) = {v1, v2, ..., vd}, where NT (v0) is the neighborhood of v0 in
T and d = δT (v0). Let Ti be the largest subgraph of T containing vi but not containing v0. It is
easy to see that δTi(vi) = 1. By attaching v1 ∈ V (T1) to G as described in Theorem 3.8, we have
another orthogonal graph. Attaching v2 ∈ V (T2) to the resulting graph yield us another orthogonal
graph. By continuing the process we will have the resulting orthogonal graph be G ∪ T . Thus we
have proved Theorem 3.9

Theorem 3.9. If G is an orthogonal graph and T is a tree such that |V (G) ∩ V (T )| = 1, then
G ∪ T is orthogonal.

We conclude our discussion by stating a direct implication of Theorem 3.8.

Theorem 3.10. Any tree is orthogonal.

4. Conclusion

In this paper we have some main results stating that any graph containing K3 as its subgraph
is non-orthogonal and that a graph G′ obtained from adding a pendant to a vertex in orthogonal
graph G is orthogonal. As a corollary of the latter we have that any tree is orthogonal. For further
study we can generalize the result for orthogonal labeling on inner product space F n, where F is a
field. However, we need to make sure that the inner product to be consistent in F n for any natural
number n.
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Figure 2. This is the caption of figure

Table 1. This is the table caption

Graph Notation Lower Bound Upper Bound
Cycle Cn n+ 2 n2 + 2
Path Pn n+ 1 n2 + 1
Complete graph Kn 2 n+ 4
Complete bipartite graph Km,n 2n+ 2 3n2 + 2
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