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Abstract

The relationship among every pair of vertices in a graph can be represented as a matrix, such as in
the adjacency matrix and the distance matrix. Both adjacency and distance matrices have the same
property. Adjacency and distance matrices are both symmetric matrices with diagonals entries
equals to 0. This paper discusses relationships between the adjacency matrix and the distance
matrix graph of diameter two, which is D = 2(J − I) − A. From this relationship, we also
determine the value of determinant matrix (A + D) and lower bound of determinant of distance
matrix of a graph of diameter two.
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1. Introduction

A graph G is defined as a pair of set (V,E) where V is a non-empty finite set of objects (called
as the vertices of G) and E is the set (possibly empty) of unordered pairs of different vertices in
V (called as the edge of G)[2]. The adjacent relationship of vertices in a graph can be represented
in a matrix with ordo n×, called an adjacency matrix. The rows and columns of this matrix
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represent vertices, and entries of this matrix represent a relationship between vertices. We denote
the adjacency matrix with A = A(G) in which the ij-entry is 1 if there is an edge ij from vertices
i to j, and 0 otherwise [1].

Distance matrix D = (dij) of a graph G has entries dii = 0 and dij is equal to the length of the
shortest path between the vertices i and j [5]. This matrix has the same property as the adjacency
matrix, such that it is a symmetric matrix with diagonal entries are all 0. The maximum length
between two vertices in a graph G is called the diameter, notated by diam (G) [2]. The graph
discussed in this paper is a simple graph with diameter two. The graph with a diameter two is
chosen since this graph is the simplest graph explaining the relationship between the adjacency
matrix and the distance matrix. Some examples of graphs with diameter two that are familiar are
complete bipartite graphs, wheel graphs, friendship graphs, and fan graphs.

This paper discusses the relationship between the adjacency matrix and the distance matrix of a
graph of diameter two. Furthermore, we gave the value of det(A+D) and lower bound of det(D).

2. New Results

Theorem 2.1. Let G be a graph with diameter two, D be its distance matrix, and A is its adjacency
matrix, then D = 2(J − I) − A, which J is a matrix with all entries are 1 and I is an identity
matrix.

Proof. Let G be a graph with diameter two and D = (dij) be a distance matrix with dij is the
length of the shortest path between the vertices i and j. Thus, we obtain the entries of a matrix D
as follows.

dij =


0,
1,
2,

if i = j,
if i and j is adjacent,
if i and j is not adjacent.

Let A = (aij) be an adjacency matrix. Define

X = 2 (J − I)− A

= 2




1 1 · · · 1
1 1 · · · 1
...

... . . . ...
1 1 · · · 1

−


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

− A



=


0 2 · · · 2
2 0 · · · 2
...

... . . . ...
2 2 · · · 2

− A

with aij =

{
0,
1,

if i = j or i and j is not adjacent,
if i and j is adjacent.
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Let Y = (yij) =


0 2 · · · 2
2 0 · · · 2
...

... . . . ...
2 2 · · · 2

, then we obtain entries of matrix (xij) = (yij)− (aij) are as

follows.

xij =


0,
1,
2,

if i = j,
if i and j are adjacent,
if i and j are not adjacent.

Since the size and entries of matrix X and D are the same, then it is proven that X = D =
2(J − I)− A.

Lemma 2.1. Given the n × n matrix J = (eij) , where eij = 1 for all i, 1 < i < n, and all j,
1 < j < n, then

J2 − J = (n− 1)J.

Proof. Since eij = 1, then
eij.eij = [J ]i,w.[J ]w,i

=
n∑

w=1

(1)(1)

=
n∑

w=1

1

= n.

Then J2 − J is a matrix of order n × n with all entries are n − 1 or can be write as J2 − J =
(n− 1)J .

Corollary 2.1. Let A be an adjacency matrix with diameter of two, D be a distance matrix , and
J = (eij) be a matrix of order n× n , where eij = 1 then

AJ = 2(n− 1)J −DJ.

Proof. From Theorem 1.1., we know that A = 2(J − I)−D.

AJ = (2(J − I)−D)J
= (2J − 2I −D)J
= 2(J2 − J)−DJ.

Based on Lemma 2.1, we knew that J2− J = (n− 1)J . Thus it is proven that AJ = 2(n− 1)J −
DJ .

Theorem 2.2. Let A be an adjacency matrix and D be a distance matrix of a graph G of order n,
then

det (A+D) = 2n (−1)n−1 (n− 1) .
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Proof. Based on Theorem 2.1., we have D = 2(J − I)− A. Thus D + A = 2(J − I).
det(A+D) can be obtained by elementary row operations on the matrix A+D.

det(A+D) =



0 2 2 2 2 2 · · · 2
2 0 2 2 2 2 · · · 2
2 2 0 2 2 2 · · · 2
2 2 2 0 2 2 · · · 2
2 2 2 2 0 2 · · · 2
2 2 2 2 2 0 · · · 2
...

...
...

...
...

... . . . ...
2 2 2 2 2 2 · · · 0



= 2n



0 1 1 1 1 1 · · · 1
1 0 1 1 1 1 · · · 1
1 1 0 1 1 1 · · · 1
1 1 1 0 1 1 · · · 1
1 1 1 1 0 1 · · · 1
1 1 1 1 1 0 · · · 1
...

...
...

...
...

... . . . ...
1 1 1 1 1 1 · · · 0


.

Using elementary row operation, we have the following result.

det(A+D) = 2n(−1)n−1



1 0 1 1 1 1 · · · 1
0 1 1 1 1 1 · · · 1
0 0 1 2 1 1 · · · 1
0 0 0 1 −1 0 · · · 1
0 0 0 0 1 −1 · · · 0
0 0 0 0 0 1 · · · 0
...

...
...

...
...

... . . . ...
0 0 0 0 0 0 · · · n− 1


= 2n(−1)n−1(n− 1).

In [4] Ryser mentioned that the upper bound of the determinant of the square matrix which has
entries 0 and 1 with size n and t of non-zero entries is as follows.

det(A) ≤
(
2m

n

)n(
1− 2m− n

n(n− 1)

)n−1

.

Based on this formula, we obtain the lower bound of the distance matrix graph G with diameter
two, aswestated in Theorem 2.3.

Theorem 2.3. Let D be an n × n distance matrix of a graph G with diameter two where n ≥ 2
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vertices and m edges, then the lower bound of distance matrix D is

det(D) ≥ 2n(−1)n−1(n− 1)−
(
2m

n

)n(
1− 2m− n

n(n− 1)

)n−1

.

Proof. Since A and D are semidefinite positive matrices, then from Theorem 1.1, we obtain
det(A+D) ≥ det(A) + det(D).

According to inequality (*), we have det(A) ≥
(
2m
n

)n (
1− 2m−n

n(n−1)

)n−1

. Then

det(A+D) ≥ det(A) + det(D) ≤
(
2m

n

)n(
1− 2m− n

n(n− 1)

)n−1

+ det(D).

By using Theorem 2.2., we obtain

det(D) ≥ 2n(−1)n − 1(n− 1)−
(
2m

n

)n(
1− 2m− n

n(n− 1)

)
,

with n ≥ 2 vertices and m edges.

3. Conclusion

Based on the results, we conclud that the relationship between the adjacency matrix and the dis-
tance matrix of a graph with a diameter two is D = 2(J − I)− A. From this relationship, we can
obtain the general form of the determinant of matrix A+D and lower bound of the determinant of
distance matrix of graph G with a diameter two.
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