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Abstract

Let G = (V,E) be a connected graph. Let c be a proper coloring using k colors, namely
1, 2, · · · , k. Let Π = {S1, S2, · · · , Sk} be a partition of V (G) induced by c and let Si be the
color class that receives the color i. The color code, cΠ(v) = (d(v, S1), d(v, S2), · · · , d(v, Sk)),
where d(v, Si) = min{d(v, x)|x ∈ Si} for i ∈ [1, k]. If all vertices in V (G) have different color
codes, then c is called as the locating-chromatic k-coloring of G. Minimum k such that G has
the locating-chromatic k-coloring is called the locating-chromatic number, denoted by χL(G). In
this paper, we discuss the locating-chromatic number for n certain amalgamation of stars linking a
path, denoted by nSk,m, for n ≥ 1, m ≥ 2, k ≥ 3, and k > m.
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1. Introduction

The locating chromatic number is a topic in graph theory, derived from the vertex-coloring and
partition dimension of a graph [11]. Many paper discussed about the locating chromatic number
since Chartrand et al. [9] introduced the concept in 2002.

All graphs considered are finite, undirected and simple. Let G = (V,E) be a connected graph.
Let c be a proper coloring using k colors, namely 1, 2, · · · , k. Let Π = {S1, S2, · · · , Sk} be
a partition of V (G) induced by c and let Si be the color class that receives the color i. The
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color code, cΠ(v) = (d(v, S1), d(v, S2), · · · , d(v, Sk)), where d(v, Si) = min{d(v, x)|x ∈ Si}
for i ∈ [1, k]. If all vertices in V (G) have different color codes, then c is called as the locating-
chromatic k-coloring ofG. Minimum k such thatG has the locating-chromatic k-coloring is called
the locating-chromatic number, denoted by χL(G).

Theorem 1.1. [10] Let G be a simple connected graph and c be a locating coloring of G. If
v, w ∈ V (G) and v 6= w such that d(v, x) = d(w, x) for all x ∈ V (G)−{v, w}, then c(v) 6= c(w).
In particular, if v and w are non adjacent vertices of G such that neighborhood of v is equal to
neighborhood of w, then c(v) 6= c(w).

Corollary 1.1. [10] If G is a simple connected graph containing a vertex that is adjacent to k
leaves of G, then χL(G) ≥ k + 1.

Chartrand et al. [9][10] obtained the locating chromatic number of some classes of graphs
such that: paths, stars, double stars, caterpillars, complete graphs, bipartite graphs, and the char-
acterization of graphs having locating chromatic number n, (n − 1), or (n − 2). Next, Asmiati
et al. investigated locating chromatic number for special kind of trees, namely: amalgamation of
stars [1], [4], firecracker graphs [2], banana trees [5]. Moreover, Baskoro at al. [8] determined
the locating chromatic number for corona product of some graphs. Beside that, Asmiati et al. [3]
characterized graphs containing cycle having locating chromatic number tree and Baskoro et al.
[7] characterized all trees having locating chromatic number three.

Let Sm+2 be a star with (m + 2) vertices. The amalgamation of stars, denoted by Sk,m, where
k,m ≥ 2, is obtained from (k − 1) stars Sm+2, by identifying one leaf of every stars Sm+2. The
identified vertex is denoted as the center of Sk,m. Graph nSk,m is obtained from n copies Sk,m and
every center of them, denoted by xi, for i = 1, 2, . . . , n is linked by one path, and (n − 1) new
vertices denoted yi, i = 1, 2, . . . , n− 1 are the subdivision vertices in xixi+1, i = 1, 2, . . . , n− 1.
Next, the vertices of distance 1 from the center xi are defined as the intermediate vertices, denoted
by lij , i = 1, 2, . . . , n, j = 1, 2, . . . , k−1 and the t-th leaf of the intermediate vertices lij are denoted
by lijt(t = 1, 2, . . . ,m).

In [6], Asmiati et al. determined the locating chromatic number of nSk,m for k ≤ m, where
k ≥ 3 and m ≥ 2, as follows.

χL (nSk,m) =

{
m+ 1, 1 ≤ n ≤ b m

k−1
c;

m+ 2, otherwise.

In this paper we will discuss the locating chromatic number of nSk,m for k > m, where k ≥ 3 and
m ≥ 2.

2. Main Results

In this section, we will discuss about the locating chromatic number of nSk,m for n ≥ 1 and
k > m, k ≥ 3,m ≥ 2.

Lemma 2.1. Let c be a coloring on nSk,m using (k−a) colors, where k > m, k ≥ 3,m ≥ 2 , a ≥
0, a = k −m− 1. Coloring c is a locating coloring if and only if c

(
lij
)

= c(lsn), j 6= n and i 6= s

such that
{
c(lijt)

∣∣ t = 1, 2, 3, . . . , m
}

and {c(lsnt) | t = 1, 2, 3, . . . , m} are two different sets.
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Proof. Consider P=
{
c(lijt)

∣∣ t= 1, 2, 3, . . . , m
}

and Q= {c(lsnt) | t= 1, 2, 3, . . . , m}. Let c be
a locating coloring of nSk,m, k>m, k≥3,m≥2, a≥0, dan c

(
lij
)

=c(lsn) , for some j 6=n, and i 6=s.
Suppose that P=Q. Since d(lij, u) = d(lsn, u) for each u ∈ V \{{lijt}∪{lsnk}}, then the color codes
of lij and lsn are the same. So, c is not a locating coloring, a contrary. As the result, P 6=Q.

Let Π be a partition of V (G) with |Π| ≥ m. Consider c(lij) = c(lsn), j 6= n, dan i 6= s. Since
P 6= Q, then there are two colors, namely x and y such that (x ∈ P, x /∈ Q ) or (y ∈ P, y /∈ Q ).
Next, we will show that every v ∈ V (nSk,m) have different color codes.

• It is clear that cΠ

(
lij
)
6= cΠ(lsn), since their color codes are different in the x-ordinat or

y-ordinat.

• If c(lijt) = c(lsnt), for each lij 6= lsn, then we divide two cases to show that cΠ(lijt) 6= cΠ(lsnt)

Case 1: If c(lijt) = c(lsnt), then based on the previous proof P 6= Q. So, cΠ

(
lijt
)
6= cΠ(lsnt).

Case 2: Consider c
(
lij
)

= p1 and c (lsn) = p2, where p1 6= p2. Then cΠ

(
lijt
)
6= cΠ(lsnt)

because their color codes are different at least in the p1-ordinat and p2-ordinat.

• If c (xi) = c(lijt), then the color code of cΠ (xi) contains at least two components with value
1, whereas in cΠ(lijt) contains exactly one component with value 1. So, cΠ (xi) 6= cΠ(lijt).

• If c (yi) = c(lijt), then the color code of cΠ (yi) contains at least two components with values
1. whereas in cΠ(lijt) contains exactly one component with value 1. So, cΠ (yi) 6= cΠ(lijt).

From all cases, we can see that all vertices in nSk,m have different color codes, so c is a locating
coloring. �

Lemma 2.2. Let n ≥ 1, k > m, k ≥ 3,m ≥ 2, a ≥ 0, and a = k −m − 1. If c is a locating

coloring of nSk,m using k − a colors and H(a) =

⌊
(k − a− 1)

(
k−a−1

m

)
k − 1

⌋
, then n ≤ H (a).

Proof. Let c be a (k − a)-locating coloring of nSk,m. For some j, consider c(lij) as the color
of lij , then the color combination of

{
lijt
∣∣ t = 1, 2, 3, . . . , m

}
is
(
k−a−1

m

)
. Since one color has

been used for the central vertex x, then there are (k − a − 1) colors left to be assigned to lij , for
each i = 1, 2, . . . , n and j = 1, 2, 3, . . . , k − 1. By Lemma 2.1, the maximum number for n is⌊

(k − a− 1)
(
k−a−1

m

)
k − 1

⌋
= H(a), a ≥ 0. �

Theorem 2.1. Let nSk,m be some certain amalgamation of stars for a ≥ 0, k > m, k ≥ 3, m ≥ 2,
a = k −m− 1. Then

χL(nSk,m) =

{
k − a, 1 ≤ n ≤ H(a),
k − a+ 1, otherwise.
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Proof. First, we determine the lower bound of χL (nSk,m) for 1 ≤ n ≤ H (a) =

⌊
(k − a− 1)

(
k−a−1

m

)
k − 1

⌋
.

Since every vertex lij for i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . , k−1 are adjacent to m = k−a−1
leaves, then by Corollary 1.1, we have χL (nSk,m) ≥ k − a.

To determine the upper bound of χL (nSk,m) for 1 ≤ n ≤ H (a) =

⌊
(k − a− 1)

(
k−a−1

m

)
k − 1

⌋
, let c

be a coloring of V (nSk,m) using (k − a) colors. We assign the coloring as follows.

• c(xi) = 1, for i = 1, 2, 3, . . . , n.

• c(yi) = 2, for odd i and 3 for even i = 1, 2, 3, . . . , n.

• Color of lji for each i = 1, 2, . . . , n and j = 1, 2, . . . , (k − 1) given color 2, 3, . . . , (k − a),
respectively.

• {c(lijt)} = {1, 2, 3, . . . , k − a} \ {c(lji )} for t = 1, 2, 3, . . . ,m.

Next, we will show that all vertices in V (nSk,m) have different color codes. Consider u, v ∈
V (nSk,m) and c (u) = c (v). Then we have the following cases.

• If u = xi, v = xk for some i, k and i 6= k, then cΠ (u) 6= cΠ(v) because c(lij) 6= c(lkj ) for
each i = 1, 2, . . . , (k − 1).

• If u = xi , v = lhjt for some i, h, j, t, then in cΠ (u) does not have component value four,
whereas in cΠ (v), exactly one component has value 4. So, cΠ (u) 6= cΠ(v).

• If u = yi , v = lij, for some i, j, then in cΠ (u) exactly two components have value 1,
whereas in c (v), at least three components have value 1. So, cΠ (u) 6= cΠ(v).

• If u = yi , v = lkj , for some i, k, j and i 6= k, then in cΠ (u) exactly two components have
value 1, whereas in c (v), at least three components have value 1. So, cΠ (u) 6= cΠ(v).

• If u = yi, v = lijt for some i, j, t, then in cΠ (u), exactly two components have value 1,
whereas in c (v), exactly one component has value 1. As a result, cΠ (u) 6= cΠ(v).

• If u = yi, v = lkjt for some i, k, j, t and i 6= k, then in cΠ (u) at least two components have
value 1, whereas in c (v), exactly one component has value 1. So, cΠ (u) 6= cΠ(v).

• If u = lij , v = lijt for some i, j, t, then in cΠ (u) at least two components have value 1,
whereas in c (v), exactly one component has value 1. As a result, cΠ (u) 6= cΠ(v)

• If u = lij , v = lkht for some i, j, k, h, t and i 6= k, j 6= h, then in cΠ (u), at least two
components have value 1, whereas in c (v), exactly one component has value 1. So, cΠ (u) 6=
cΠ(v)

• if u = lijt, v = liht for some i, j, h, t ,j 6= h. Since {c(lijt)} 6= {c(liht)}, then cΠ(u) 6= cΠ(v).
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• If u = lijt, v = lkjt for some i, j, k, t ,i 6= k. Since c
(
lij
)
6= c

(
lkj
)
, then cΠ(u) 6= cΠ(v).

Since all vertices have different color codes, then c is a locating coloring on nSk,m. Thus, χL (nSk,m) ≤
k − a for n ≤ H (a).
Next, we discuss the locating chromatic number of nSk,m for n > H (a) .
By Corollary 1.1, we have the trivial lower bound, χL (Sk,m) ≥ k − a for > H (a). Suppose
that c is a locating coloring using (k − a) colors on nSk,m for k > m, k ≥ 3, m ≥ 2, and n >
H (a). Since n > H (a), then there are i, j, k, t, i 6= k and

{
c
(
lij
)
, c
(
lijt
)}

=
{
c
(
lkj
)
, c
(
lkjt
)}

=

{1, 2, 3, . . . , k − a} such that cΠ

(
lij
)

= cΠ

(
lkj
)

for some j = 1, 2, 3, . . . , k−1, t = 1, 2, 3, . . . ,m,
a contrary. Thus, χL (Sk,m) ≥ k − a+ 1 for n > H (a).
Let c be a coloring on nSk,m using (k − a+ 1) colors. We assign the coloring as follows.

• c(xi) = 1, for i = 1, 2, 3, . . . , n.

• c(yi) = 2, for odd i and 3 for even i = 1, 2, 3, . . . , n.

• For j = 1, 2, 3, . . . , (k − 1), c(lji ) = 2, for odd i and 3 for even i = 1, 2, 3, . . . , n.

• If A = {1, 2, . . . , k − a+ 1}, define:

{c(lijt)|t = 1, 2, . . . ,m)} =

{
A\{1, k − a} if i = 1,
A\{k − a+ 1} otherwise.

The maximum number of colored p is
(
k−a−1

m

)
for any p. We can do that because n > H (a). So,

c
(
lij
)

= c(lsn), j 6= n, dan i 6= s. Thus, we can arrange such that
{
c(lijt)

∣∣ t = 1, 2, 3, . . . , m
}
6=

{c(lsnt) | t = 1, 2, 3, . . . , m}. As the result, by Lemma 2.1, c is a locating coloring. Thus, χL (nSk,m) ≤
k − a+ 1 for n > H (a) . As the conclusion, we obtain that χL (nSk,m) = k − a+ 1. �
For an illustration, we give the locating-chromatic coloring of nS5,3 for 1 ≤ n ≤ 4 in Figure 1 and
nS5,3 for n > 4 in Figure 2.

Figure 1. A minimum locating coloring of 4S5,3
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Figure 2. A minimum locating coloring of nS5,3 for n > 4, a = 0
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