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Abstract

Let G = (V,E) be a connected graph. Let ¢ be a proper coloring using k colors, namely
1,2,-+- k. LetIT = {S1,S55,---,Sk} be a partition of V(G) induced by ¢ and let S; be the
color class that receives the color i. The color code, crp(v) = (d(v, S1),d(v,S2),- - ,d(v,Sk)),
where d(v, S;) = min{d(v,z)|z € S;} fori € [1, k|. If all vertices in V(&) have different color
codes, then c is called as the locating-chromatic k-coloring of G. Minimum k such that G has
the locating-chromatic k-coloring is called the locating-chromatic number, denoted by x(G). In
this paper, we discuss the locating-chromatic number for n certain amalgamation of stars linking a
path, denoted by n.Sj, ,,,, forn > 1, m > 2,k > 3, and k > m.
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1. Introduction

The locating chromatic number is a topic in graph theory, derived from the vertex-coloring and
partition dimension of a graph [11]. Many paper discussed about the locating chromatic number
since Chartrand et al. [9] introduced the concept in 2002.

All graphs considered are finite, undirected and simple. Let G = (V, ) be a connected graph.
Let ¢ be a proper coloring using %k colors, namely 1,2 --- k. Let I = {S;,5,---,Sk} be
a partition of V(@) induced by ¢ and let \S; be the color class that receives the color i. The
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color code, cri(v) = (d(v,Sy),d(v,Ss),- - ,d(v,Sk)), where d(v,S;) = min{d(v,z)|z € S;}
for ¢ € [1,k|. If all vertices in V' (G) have different color codes, then c is called as the locating-
chromatic k-coloring of G. Minimum k such that G has the locating-chromatic k-coloring is called
the locating-chromatic number, denoted by x 1 (G).

Theorem 1.1. [10] Let G be a simple connected graph and c be a locating coloring of G. If
v,w € V(G) andv # w such that d(v, x) = d(w, x) forall x € V(G) —{v,w}, then c(v) # c(w).
In particular, if v and w are non adjacent vertices of G such that neighborhood of v is equal to
neighborhood of w, then c(v) # c(w).

Corollary 1.1. [10] If G is a simple connected graph containing a vertex that is adjacent to k
leaves of G, then x1(G) > k + 1.

Chartrand et al. [9][10] obtained the locating chromatic number of some classes of graphs
such that: paths, stars, double stars, caterpillars, complete graphs, bipartite graphs, and the char-
acterization of graphs having locating chromatic number n, (n — 1), or (n — 2). Next, Asmiati
et al. investigated locating chromatic number for special kind of trees, namely: amalgamation of
stars [1], [4], firecracker graphs [2], banana trees [S]. Moreover, Baskoro at al. [8] determined
the locating chromatic number for corona product of some graphs. Beside that, Asmiati et al. [3]
characterized graphs containing cycle having locating chromatic number tree and Baskoro et al.
[7] characterized all trees having locating chromatic number three.

Let S,,+2 be a star with (m + 2) vertices. The amalgamation of stars, denoted by S ,,, where
k,m > 2, is obtained from (k — 1) stars S, 2, by identifying one leaf of every stars S, 2. The
identified vertex is denoted as the center of Sy, ,,,. Graph n.S, ,, is obtained from n copies Sy, and
every center of them, denoted by z;, for i = 1,2,... n is linked by one path, and (n — 1) new
vertices denoted y;, ¢ = 1,2,...,n — 1 are the subdivision vertices in x;z;11,7 = 1,2,...,n — 1.
Next, the vertices of distance 1 from the center x; are defined as the intermediate vertices, denoted
by l}, 1=1,2,...,n,7 =1,2,..., k—1 and the ¢-th leaf of the intermediate vertices lj- are denoted
by Ii)(t =1,2,...,m).

In [6], Asmiati et al. determined the locating chromatic number of n.Sj, ,,, for & < m, where
k > 3 and m > 2, as follows.

m+1, 1<n< [
m + 2, otherwise.

Xt (nSkm) = {

In this paper we will discuss the locating chromatic number of .Sy, ,,, for & > m, where £ > 3 and
m > 2.
2. Main Results

In this section, we will discuss about the locating chromatic number of n.Sj ,,, for n > 1 and
k>m,k>3m>2.

Lemma 2.1. Let c be a coloring on nSy, ,, using (k — a) colors, where k > m,k >3,m > 2 ,a >
0, a =k —m — 1. Coloring cis a locating coloring if and only if c (l;) =c(l8),j#nandi# s
such that {c(lét) | t=1,2,3, ..., m} and {c(l3,) |t =1,2,3, ..., m} are two different sets.
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Proof. Consider P={c(l%,) | t=1,2,3, ..., m} and Q={c(l3,) | t=1,2,3, ..., m}. Let c be
a locating coloring of 1.y, k>m, k>3,m>2,a>0, dan ¢ (1) =c(l5) , for some j#n, and i#s.
Suppose that P=@Q. Since d(I}, u) = d(I}, u) for each u € V\{{l},} U{l3,}}, then the color codes
of [ and [}, are the same. So, c is not a locating coloring, a contrary. As the result, P#Q).

Let II be a partition of V(G) with |TT| > m. Consider ¢(I%) = c(I}), j # n, dan i # s. Since
P # @, then there are two colors, namely = and y such that (x € P, z ¢ Q)or(y € P, y ¢ Q).
Next, we will show that every v € V' (nSy,,,) have different color codes.

e It is clear that cf (l;) # cn(l2), since their color codes are different in the z-ordinat or
y-ordinat.

o If ¢(l%,) = c(l3,), for each I’ # I7, then we divide two cases to show that cri(1%,) # c(l;,)
Case 1: If ¢(l},) = ¢(I3,), then based on the previous proof P # Q. So, ¢y (I%,) # cn(L3,).
Case 2: Consider ¢ (I}) = p; and ¢(I5) = py, where pi1# p,. Then e (%) # cn(l3,)

because their color codes are different at least in the p;-ordinat and p,-ordinat.

o If ¢ (2;) = c(l},), then the color code of ¢y (;) contains at least two components with value
1, whereas in cr(1%,) contains exactly one component with value 1. So, crr (;) # cn(l%,).

e If ¢ (y;) = c(},), then the color code of cry (y;) contains at least two components with values
1. whereas in cpi(I};) contains exactly one component with value 1. So, cry (y:) # cn(l%,).

From all cases, we can see that all vertices in n.S} ,,, have different color codes, so ¢ is a locating
coloring. [

Lemma 2.2. Letn > 1,k >m, k>3 m>2 a>0,anda =k —m — 1. Ifcisalocating

(k—a— 1)(]“_;;_1)
1 J,thennSH(a).

coloring of nSy, , using k — a colors and H(a) = {

Proof. Let c be a (k — a)-locating coloring of n.Sy,,. For some j, consider ¢(l}) as the color

of I}, then the color combination of {I%, | t=1,2,3,..., m} is (*~“=1). Since one color has

been used for the central vertex x, then there are (k — a — 1) colors left to be assigned to l;, for

eachi =1,2,...,nand j = 1,2,3,..., k — 1. By Lemma 2.1, the maximum number for n is
k _ _ 1 k—a—1

Theorem 2.1. Let nSy, ,, be some certain amalgamation of stars fora > 0, k > m, k > 3, m > 2,
a=k—m—1. Then

k—a, 1 <n< H(a),
k—a+1, otherwise.

XL(”Sk,m) = {
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k—1
Sinceeveryvertexl;- fort =1,2,3,...,nandj =1,2,3,..., k—1areadjacenttom =k—a—1
leaves, then by Corollary 1.1, we have x, (nSk,) > k — a.

k—a—1)Ft

( )( 1 )J,letc

Proof. First, we determine the lower bound of x, (nS,,,) forl <n < H (a) = {

(k—a—1) (’f—;—l)J |

To determine the upper bound of x; (nSk,,) forl <n < H (a) =

k—1
be a coloring of V' (nSk ,,) using (k — a) colors. We assign the coloring as follows.

o c(x;)=1,fori =1,2,3,...,n.
e ¢(y;) =2,forodd i and 3 foreveni =1,2,3,...,n.

° Coloroflf foreachi =1,2,...,nandj = 1,2,...,(k — 1) givencolor 2,3, ..., (k — a),
respectively.

o {c(lipt={1,23,....k—a}\{c(l))} fort =1,2,3,...,m.

Next, we will show that all vertices in V' (nSk,,) have different color codes. Consider u,v €
V' (nSk.m) and ¢ (u) = ¢ (v). Then we have the following cases.

o Ifu = x;, v = x for some 4, k and i # k, then cpy (u) # cn(v) because c(l%) # c(I¥) for
eachi=1,2,... (k—1).

o If u=2xa;,,v= l;‘t for some i, h, j,t, then in cyy (u) does not have component value four,
whereas in ¢ (v), exactly one component has value 4. So, cyp (u) # crp(v).

e lf u=y,,v= l;'-, for some i, j, then in ¢y (u) exactly two components have value 1,
whereas in ¢ (v), at least three components have value 1. So, ¢ (u) # cn(v).

o If u=y,,v= lf , for some i, k, j and ¢ # k, then in cyy (u) exactly two components have
value 1, whereas in ¢ (v), at least three components have value 1. So, ¢y (u) # cr(v).

o Ifu=y,v = l;'.t for some i, j, t, then in ¢y (u), exactly two components have value 1,
whereas in ¢ (v), exactly one component has value 1. As a result, ¢ (u) # cr(v).

o Ifu=y;,v= lé?t for some i, k,j, t and i # k, then in ¢ (u) at least two components have
value 1, whereas in ¢ (v), exactly one component has value 1. So, cry (u) # cr(v).

o If u = l;-, v = l;t for some 1, 7,t, then in ¢y (u) at least two components have value 1,
whereas in ¢ (v), exactly one component has value 1. As a result, cry (u) # cr(v)

o If u = l; v = [} for some 4,7, k,h,t and i # k, j # h, then in cyy (u), at least two
components have value 1, whereas in ¢ (v), exactly one component has value 1. So, cry (u) #
cn(v)

o if u=1~0

' v = 1}, for some 4,7, h,t.j # h. Since {c(l},)} # {c(l},)}, then crr(u) # cr(v).
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o Ifu= l]i-t,

v = 1% for some i, j, k,t i # k. Since ¢ (1) # ¢ (I¥), then cr(u) # cn(v).

Since all vertices have different color codes, then ¢ is a locating coloring on n.5% ,,. Thus, x 1, (n.Sk ) <
k—a forn < H (a).

Next, we discuss the locating chromatic number of n.Sj ,,, forn > H (a).

By Corollary 1.1, we have the trivial lower bound, xr, (Sk,) > k — a for > H (a). Suppose
that ¢ is a locating coloring using (k — a) colors on nSy ,, for k > m, k > 3, m > 2, and n >

H (a). Since n. > H (a), then there are i, j, k,t,i # kand {c (I}) ,c (If,) } = {c (I¥) ,c (I%)} =
{1,2,3,..., k—a}suchthatcy (I}) = e (I¥) forsome j = 1,2,3,... k—1,t=1,2,3,...,m,

a contrary. Thus, x1, (Sk.m) >k —a+ 1forn > H (a).

Let ¢ be a coloring on n.Sy ., using (k — a + 1) colors. We assign the coloring as follows.

o ¢(r;)=1,fori =1,2,3,... n.
e ¢(y;) =2,forodd i and 3 foreveni =1,2,3,...,n.

Forj:1,2,3,...,(/{—1),0([{):2,f0roddiand3f0reveni:1,2,3,...,n.

If A={1,2,...,k —a+ 1}, define:

Dy [ ALk—a} ifi=1,
{eG)lt=1,2,...,m)} = { A\{k —a+ 1} otherwise.

The maximum number of colored p is (k _;;_1) for any p. We can do that because n > H (a). So,
¢ (IY) = ¢(l3), j # n,dan i # s. Thus, we can arrange such that {c(l},) | t =1,2,3, ..., m} #

{c(l5,) |t =1,2,3, ..., m}. Astheresult, by Lemma 2.1, cis alocating coloring. Thus, xr, (1n.Skm) <
k —a+1forn > H (a). As the conclusion, we obtain that x1, (nS,) =k —a+ 1. O

For an illustration, we give the locating-chromatic coloring of n.S5 3 for 1 < n < 4 in Figure 1 and
nSs 3 for n > 4 in Figure 2.

Figure 1. A minimum locating coloring of 455 3
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Figure 2. A minimum locating coloring of nSs 3 forn >4, a =0

References

[1] Asmiati, H. Assiyatun, E.T. Baskoro, Locating-Chromatic Number of Amalgamation of
Stars, ITB J.Sci. 43A (2011), 1 - 8.

[2] Asmiati, H. Assiyatun, E.T. Baskoro, D. Suprijanto, R. Simanjuntak, S. Uttunggadewa,
Locating-Chromatic Number of Firecracker Graphs, Far East Journal of Mathematical Sci-
ences 63(1) (2012), 11 —23.

[3] Asmiati, E.T. Baskoro, Characterizing of Graphs Containing Cycle with Locating-Chromatic
Number Three, AIP Conf. Proc. 1450 (2012), 351 — 357.

[4] Asmiati, Locating-Chromatic Number of Non Homogeneous Amalgamation of Stars, Far
East Journal of Mathematical Sciences 93(1) (2014), 89 — 96.

[5] Asmiati, Locating-chromatic number of banana tree, International Mathematical Forum,
12(1) (2017), 39 — 45.

[6] Asmiati, Bilangan kromatik lokasi n amalgamasi bintang yang dihubungkan oleh suatu lin-
tasan, Jurnal Matematika Integratif 13(2) (2017), 115 - 121.

[7] E.T. Baskoro, Asmiati, Characterizing all Trees with Locating-Chromatic Number 3, Elec-
tronic Journal of Graph Theory and Applications 1(2) (2013), 109 — 117.

55



Further Results on Locating Chromatic Number ... | Asmiati, L. Yulianti and C. I. T. Widyastuti

[8] E.T. Baskoro, I. A. Purwasih, The Locating-Chromatic Number for Corona Product of
Graphs, Southeast-Asian J. of Sciences 1(1) (2012), 126 — 136.

[9] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zang , The Locating-Chromatic Num-
ber of a Graph, Bulls. Inst. Combin. Appl. 36 (2002), 89 — 101.

[10] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater, P. Zang , Graph of Order n with Locating-
Chromatic Number n — 1, Discrete Mathematics 269 (2003), 65 — 79.

[11] G. Chartrand, P. Zhang, E. Salehi, On the Partition Dimension of Graph, Congr. Numer.
130(1998), 157 — 168.

56



