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Abstract

For a colour cluster C = (C1, C2, C3, . . . , C`), where Ci is a colour class such that |Ci| = ri, a positive
integer, we investigate two types of simple connected graph structures GC

1 , GC
2 which represent

graphical embodiments of the colour cluster such that the chromatic numbers χ(GC
1 ) = χ(GC

2 ) = `

and min{ε(GC
1 )} = min{ε(GC

2 )} =
∑̀
i=1

ri − 1, and ε(G) is the size of a graph G. In this paper, we

also discuss the chromatic Zagreb indices corresponding to GC
1 , GC

2 .
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1. Introduction

For general notation and concepts in graphs and digraphs see [3, 4, 6, 12]. Unless mentioned
otherwise all graphs we consider in this paper are finite, simple, connected and undirected graphs.
The order and size of a graph G are denoted, ν(G) and ε(G), respectively.

The chromatic number χ(G) ≥ 1 of a graph G is the minimum number of distinct colours that
allow a proper colouring of G. Such a colouring is called a chromatic colouring of G. The colour
weight of a colour in a graph G is the number of times a colour cj has been allocated to the vertices
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of G, denoted by θ(cj) ≥ 1. In other words, the colour weight of a colour ci can be considered as
the cardinality of the corresponding colour class in the graph concerned.

Analogous to set theory notation, let C =
⋃

1≤i≤χ(G)

Ci, where Ci is a colour class. Call C a colour

cluster. It is noted that for χ(G) ≥ 2 a graph GC with max{ε(GC)} that requires the colour cluster
C to allow exactly a chromatic colouring (minimum proper colouring) is the complete χ(G)-partite
graph Kθ(c1),θ(c2),...,θ(cχ(G)) or put differently, the complete `-partite graph with vertex partitioning
Vi(G

C), 1 ≤ i ≤ ` such that |Vi(GC)| = |Ci|, and
⋃

1≤i≤`
Vi(G

C) = V (GC). Therefore, if |Ci| = 1,

∀ 1 ≤ i ≤ χ(G) it is a complete graph, Kχ(G). For the colour cluster C = (C1) the graph GC is a
null graph (no edges).

1.1. An application analogy
Energy can entirely be transformed and transmitted as energy waves. The electromagnetic

spectrum of these energy waves ranges between cosmic rays, gamma rays, X-rays, ultra violet
rays, optical light with its inherent spectrum of optical colours, infra-red rays, micro waves, short
radio waves and long radio waves. These waves or rays transmit at the speed of light. An energy
unit per wave (or ray) type is the amount of energy transmitting per second.

In our application analogy all such energy units are simply called, colours. If for a given finite clus-
ter of distinct energy units (colours), the colours must be linked to ensure connectivity but same
colours must remain apart to prevent merging, then the problem we investigate is that of finding a
simple connected graphical embodiment allowing the colours as a proper colouring. More specifi-
cally the problem to be considered is to find properties and related results of a connected graph GC

with min{ε(GC)} that allows the prescribed colour cluster C as a chromatic colouring. Henceforth
the graph GC will mean a graph with minimum edges allowing C as a chromatic colouring.

2. Graphical Embodiment of C

We note that the cycle C5 has χ(C5) = 3 with colour cluster say, C = (c1, c1, c2, c2, c3).
However, path P5 is a graph with minimum number of edges that allows C as a proper colouring
(not chromatic colouring). This observation leads us to our first useful result given below.

Lemma 2.1. For any colour cluster C = (C1, C2, C3, . . . , C`) with |Ci| = ri > 0, ` ≥ 2, 1 ≤ i ≤ `,
the connected graphical embodiment with minimum edges that allows C a proper colouring has∑̀
i=1

ri − 1 edges.

Proof. Label the ri vertices corresponding to Ci to be vi,1, vi,2, vi,3, . . . , vi,ri , 1 ≤ i ≤ `. Add the
edges v1,1vj,k, for all 2 ≤ j ≤ `, 1 ≤ k ≤ rj . Also, add the edges v1,iv2,1, 2 ≤ i ≤ r1. Clearly,
the graph G1 obtained is a tree for which C is a proper colouring. Also, since G1 is a connected

acyclic graph, it has minimum number of edges,
∑̀
i=1

ri − 1.
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The construction methodology mentioned in the proof of Lemma 2.1 may be called the Type-I
graphical embodiment. To get aGC, we consider the induced star subgraph 〈v1,1, v2,1, v3,1, . . . , v`,1〉
of G1 and add the edges to obtain a complete subgraph, K`. Note that 1

2
(`− 1)(`− 2) edges were

added to the graph G1.
An alternative construction of such a graph GC can be done by utilising the initial edges

vi,1vi+1,j , 1 ≤ i ≤ ` − 1, 1 ≤ j ≤ ri+1 as well as the edges v2,1v1,j , 2 ≤ j ≤ r1 to obtain
graph G2. The aforesaid construction is called the Type-II graphical embodiment. Thereafter, con-
sider the induced path subgraph 〈v1,1, v2,1, v3,1, . . . , v`,1〉 and add the required 1

2
(`−1)(`−2) edges

to obtain the complete subgraph, K`. This brings us to the existence of the following theorem.

Theorem 2.1. For any colour cluster C, at least one graphical embodiment exist with minimum
number of edges for which C is a chromatic colouring. Hence χ(GC) = `.

Proof. As stated above, for the colour cluster C = (Ci) 1 ≤ i ≤ ` and |Ci| = |Cj| = 1, for all
values of i, j, the graph GC is complete. Hence, at least one graph with required properties exists.

For all other colour clusters, the result is a direct consequence of Lemma 2.1 and the alternative
construction of GC.

We note that for a colour cluster C = (C1, C2) the graph GC is acyclic. For colour clusters
C = (Ci), i ≥ 3 the graphical embodiment GC has a unique maximum clique. Figure 1(a) and
Figure 1(b) depict GC

1 , GC
2 for C = (c1, c1, c1, c1, c1, c2, c2, c2, c2, c3, c3, c3,

c4, c4, c4) = ((c1, c1, c1, c1, c1), (c2, c2, c2, c2), (c3, c3, c3), (c4, c4, c4)).

(a) (b)

Figure 1

3. Chromatic Zagreb Indices of GC

The topological graph indices related to irregularity of a graph namely the first Zagreb index,
M1(G) and the second Zagreb index, M2(G) are of the oldest irregularity measures researched.
However, the first and second Zagreb indices cannot really measure irregularity in graphs. A
new irregularity of G has been introduced by Alberton in [2] as irr(G) =

∑
e∈E(G)

imb(e), where
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imb(e) = |d(v) − d(u)|. In [5], this irregularity index was named the third Zagreb index to
conform with the terminology of chemical graph theory. Recently, the topological index called
total irregularity has been introduced in [1] as irrt(G) = 1

2

∑
u,v∈V (G)

|d(u)−d(v)|. This irregularity

index may be called the fourth Zagreb index. The study of Zagreb indices is strongly dependent on
the structural property of the edges and subsequently the degree of the vertices of the graph under
study.

A vertex colouring with colours of minimum subscripts is called a minimum parameter colour-
ing. Unless stated otherwise, the colour sets we consider in this paper are minimum parameter
colour sets. The weight of a colour ci is defined to be the number of times the colour ci is allocated
to vertices of a graph G and is denoted by θ(ci). If ϕ : vi 7→ cj , then we write c(vi) = cj .

The notion of chromatic Zagreb indices was introduced in [9]. For ease of reference we also
recall that the first three Zagreb indices are defined as:

M1(G) =
n∑
i=1

d2(vi) =
n−1∑
i=1

n∑
j=2

(d(vi) + d(vj))vivj∈E(G) (1)

M2(G) =
n−1∑
i=1

n∑
j=2

d(vi)d(vj)vivj∈E(G) (2)

M3(G) =
n−1∑
i=1

n∑
j=2

|d(vi)− d(vj)|vivj∈E(G) (3)

We define the default values, M1(K1) = M2(K1) = M3(K1) = 0. Note that the Zagreb
indices are all functions of the degree of vertices of graph G. For a given graph, the vertex degrees
are invariants. If the invariants d(vi), ∀ vi ∈ V (G) are replaced by the parameters s, c(vi) = cs,
∀vi ∈ V (G) the chromatic Zagreb indices are defined. Note that for any minimum parameter set
of colours C, |C| = `, a graph G has `! minimum parameter colourings. Denote these colourings
ϕt(G), 1 ≤ t ≤ `!. Define the variable chromatic Zagreb indices as:

Mϕt
1 (G) =

n∑
i=1

s2, c(vi) = cs, 1 ≤ t ≤ `!, (4)

=
∑̀
j=1

θ(cj) · j2, cj ∈ C, (5)

Mϕt
2 (G) =

n−1∑
i=1

n∑
j=2

(s · k)vivj∈E(G), c(vi) = s, c(vj) = k, 1 ≤ t ≤ `!, (6)

Mϕt
3 (G) =

n−1∑
i=1

n∑
j=2

|s− k|vivj∈E(G), c(vi) = s, c(vj) = k, 1 ≤ t ≤ `!. (7)

From the above we define the minimum and maximum chromatic Zagreb indices as follows:
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Mϕ−

1 (G) = min{Mϕt
1 (G) : 1 ≤ t ≤ `!},

Mϕ+

1 (G) = max{Mϕt
1 (G) : 1 ≤ t ≤ `!},

Mϕ−

2 (G) = min{Mϕt
2 (G) : 1 ≤ t ≤ `!},

Mϕ+

2 (G) = max{Mϕt
2 (G) : 1 ≤ t ≤ `!},

Mϕ−

3 (G) = min{Mϕt
3 (G) : 1 ≤ t ≤ `!},

Mϕ+

3 (G) = max{Mϕt
3 (G) : 1 ≤ t ≤ `!}.

By convention we define the default values Mϕ−

2 (K1) = Mϕ+

2 (K1) = 0, and Mϕ−

3 (K1) =

Mϕ+

3 (K1) = 1.
In view of the above mentioned terminology, we also observe the following useful lemma.

Lemma 3.1. For a graph G with chromatic colouring C = (c1, c2, c3, . . . , ck), the graph G + e,
e = cicj, i 6= j has Mϕt

1 (G) = Mϕt
1 (G + e) and therefore, Mϕ−

1 (G) = Mϕ−

1 (G + e) and
Mϕ+

1 (G) =Mϕ+

1 (G+ e).

Proof. Because the Mϕt
1 (G) is defined in terms of the colour subscript only and χ(G) = χ(G+ e)

the result follows immediately.

3.1. Application to GC

In this discussion, we will consider a specific initiation colour cluster from amongst the `!
orderings of the colour classes. That is, we consider a colour cluster C = (C1, C2, C3, . . . , C`)
with |Ci| ≥ |Ci+1|, 1 ≤ i ≤ ` − 1. Note that θ(ci) = |Ci| = ri. It implies that if after a
mapping, say cj 7→ cf(i), then θ(cj) 7→ θ(cf(i)) and rj 7→ rf(i). Hence, the notation styles may
be used interchangeably depending on which notation proffers the idea best. The convention is to
determine the minimum chromatic Zagreb index directly in terms of the initiation colour cluster
and the definition of construction. Determining the maximum chromatic Zagreb index will follow
from an appropriate colour mapping.
First, we recall important results that have been proved in [9].

Theorem 3.1. [9] For a finite tree of order n ≥ 4, we have

(i) n+ 3 ≤Mϕ−

1 (T ) ≤Mϕ+

1 (T ) ≤ 4n− 3.

(ii) Mϕ−

2 (T ) =Mϕ+

2 (T ) = 2(n− 1).

(iii) Mϕ−

3 (T ) =Mϕ+

3 (T ) = n− 1.

Applying Lemma 3.1 to the GC, where C = (C1, C2), we have the next result as follows.

Corollary 3.1. (i) θ(c1) + θ(c2) + 3 ≤Mϕ−

1 (GC) ≤Mϕ+

1 (GC) ≤ 4(θ(c1) + θ(c2))− 3.
(ii) Mϕ−

2 (GC) =Mϕ+

2 (GC) = 2(θ(c1) + θ(c2)− 1).
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(iii) Mϕ−

3 (GC) =Mϕ+

3 (GC) = θ(c1) + θ(c2)− 1.

Proposition 3.1. [9]. For complete r-partite graphs, r ≥ 2, we have

(i) Mϕt
1 (Kn, n, n, . . . , n︸ ︷︷ ︸

r−entries

) = n
6
r(r + 1)(2r + 1).

(ii) Mϕt
2 (Kn, n, n, . . . , n︸ ︷︷ ︸

r−entries

) = n2

2

r∑
i=2

i2(i− 1).

(iii) Mϕt
3 (Kn, n, n, . . . , n︸ ︷︷ ︸

r−entries

) = n2
r−1∑
i=1

i(r − 1).

Proposition 3.1 finds immediate application for GC
max edges if |Ci| = |Cj|, ∀i, j. We also present

closed formula for Proposition 3.1 (ii),(iii).

Lemma 3.2. For a complete r-partite graph Kn, n, n, . . . , n︸ ︷︷ ︸
r−entries

, we have

(i) Mϕt
2 (Kn, n, n, . . . , n︸ ︷︷ ︸

r−entries

) = n2[2r4−r(2r+1)(r+3)]
24

.

(ii) Mϕt
3 (Kn, n, n, . . . , n︸ ︷︷ ︸

r−entries

) = n2r(r−1)2
2

.

Proof. We proof the results through substitution.

(i) Since n2

2

r∑
i=2

i2(i−1) = n2

2
[
r∑
i=2

i3−
r∑
i=2

i2] = n2

2
[
r∑
i=2

i3−
r∑
i=2

i2] = n2

2
[
r∑
i=1

i3−
r∑
i=1

i2] and
r∑
i=1

i3 =

( r(r+1)
2

)2 and
r∑
i=1

i2 = r(r+1)(2r+1)
6

, the result follows through substitution and simplification.

(ii) Since n2
r−1∑
i=1

i(r − 1) = n2(r − 1)
r−1∑
i=1

i and
r−1∑
i=1

i = r(r−1)
2

, the result follows.

Note that both Type-I and II construction of a graph G with minimum edges which allows C
as a proper colouring have χ(G) ≤ `. This will be true for any other construction type. Therefore,
each construction type is extended to a well defined complete subgraph to obtain GC, except for
the case ` = 2. From [9] the chromatic Zagreb indices for complete graphs are known.

Theorem 3.2. Any two graphs GC
1 , GC

2 which allow the colour cluster C as a chromatic colouring
have MC−

1 (GC
1 ) =MC−

1 (GC
2 ) and MC+

1 (GC
1 ) =MC+

1 (GC
2 ).

Proof. The result is a direct consequence of the definition.

The following theorem discusses whether a thorn complete graph can be the graphical embod-
iment of a colour cluster.

Theorem 3.3. For a colour cluster C = (Ci) 1 ≤ i ≤ `, any thorn complete graph K?
` of order∑̀

i=1

|Ci| corresponds to a graphical embodiment of the colour cluster with min{ε(K?
` )}.
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Proof. Since, χ(K?
` ) = ` and a minimum number of pendant vertices exist to allocate exactly

|Ci| − 1, 1 ≤ i ≤ ` colours to pendant vertices, the result follows immediately.

Note that Theorem 3.3 provides a sufficient condition only. We know that all odd cycles
Cn, n ≥ 5, have chromatic number 3. These cycles are triangle-free and have min{ε(Cn)} for the
corresponding colour cluster ((c1, c1, . . . , c1)︸ ︷︷ ︸

t entries

, (c2, c2, . . . , c2)︸ ︷︷ ︸
t entries

, (c3)), where n = 2t+ 1.

We extend this study by analysing the chromatic Zagreb indices for the Type-I and II construc-
tions for a colour cluster C = (C1, C2, C3, . . . , C`) with |Ci| ≥ |Ci+1|, 1 ≤ i ≤ `− 1.

3.2. Analysis of chromatic Zagreb indices for GC
1

Proposition 3.2. For the colour cluster C the graph G1 obtained from the Type-I construction has

(i)MC−

1 (G1) =
∑̀
i=1

θ(ci) · i2;

MC+

1 (G1) =
∑̀
i=1

θ(ci) · (`− (i− 1))2.

(ii)MC−

2 (G1) = 2(`− 1) +
∑̀
i=2

θ(ci) · i;

MC+

2 (G1) = `(`− 1)2 +
∑̀
i=2

θ(ci) · `(`− (i− 1)).

(iii)MC−

3 (G1) = `− 1 +
∑̀
i=2

θ(ci) · (i− 1);

MC+

3 (G1) = (`− 1)2 +
∑̀
i=2

θ(ci) · (`− (i− 1)).

Proof. (i) Follows directly from the definition of the first chromatic Zagreb index.
(ii) Each edge v2,1vi,j , 2 ≤ j ≤ r1 has product value of 2. Therefore the first term. The second

term follows by similar reasoning in respect of each colour ci, 2 ≤ i ≤ `. Therefore the
second term hence, the result for the minimum second chromatic Zagreb index follows. The
maximum second chromatic Zagreb index follows similarly in respect of the map ci 7→
c`−(i−1).

(iii) The minimum third chromatic Zagreb index follows by similar reasoning as in part (ii) and
the maximum third chromatic Zagreb index follows in respect of the map c` 7→ c1, c1 7→
c2, c2 7→ c3 . . . c`−2 7→ c`−1.
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Corollary 3.2. For the colour cluster C, the graph GC
1 has:

(i)MC−

1 (GC
1 ) =

∑̀
i=1

θ(ci) · i2;

MC+

1 (GC
1 ) =

∑̀
i=1

θ(ci) · (`− (i− 1))2.

(ii)MC−

2 (GC
1 ) = 2(`− 1) +

∑̀
i=2

θ(ci) · i+
`−1∑
j=2

∑̀
i=j+1

j · i;

MC+

2 (GC
1 ) = `(`− 1)2 +

∑̀
i=2

θ(ci) · `(`− (i− 1)) +
`−2∑
j=1

`−1∑
i=j+1

j · i.

(iii)MC−

3 (GC
1 ) = `− 1 +

∑̀
i=2

θ(ci) · (i− 1) +
`−2∑
j=2

`−1∑
i=j+1

i · (`+ 1− 2i);

MC+

3 (GC
1 ) = (`− 1)2 +

∑̀
i=2

θ(ci) · (`− (i− 1)) +
`−2∑
j=2

`−1∑
i=j+1

i · (`+ 1− 2i).

Proof. For parts (i), (ii) and (iii), the additional sums terms follow from the known results for the
corresponding complete graph on vertices vj,1, 2 ≤ j ≤ `− 1.

3.3. Analysis of chromatic Zagreb indices for GC
2

Proposition 3.3. For the colour cluster C the graphG2 obtained from the Type-II construction has

(i)MC−

1 (G2) =
∑̀
i=1

θ(ci) · i2;

MC+

1 (G2) =
∑̀
i=1

θ(ci) · (`− (i− 1))2.

(ii)MC−

2 (G2) = 2 · (θ(c1)− 1) +
`−1∑
i=1

i(i+ 1) · θ(ci+1);

MC+

2 (G2) = `(`− 1) · (θ(c1)− 1) +
`−1∑
i=1

i(i+ 1) · θ(c(`−(i−1))).

(iii)MC−

3 (G2) =
∑̀
i=1

θ(ci)− `;

MC+

3 (G2) = (θ(c1)− 1)2 +
∑̀
i=2

(`− (i− 1)) · θ(ci).

Proof. (i) Follows directly from the definition of the first chromatic Zagreb index.
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(ii) The first term follows from the edges v2,1v1,i, 2 ≤ i ≤ r1. The second term follows directly
from the definition of the second chromatic Zagreb index.

(iii) Define the map c1 7→ c`, c2 7→ c1, c3 7→ c`−1, c4 7→ c2, c5 7→ c`−2 and so on. Clearly, this
mapping ensures maximal adjacency differences for all combinations of the distinct colours.
Therefore the result follows through similar reasoning used in part (ii).

Corollary 3.3. For the colour cluster C, the graph GC
2 has

(i)MC−

1 (GC
2 ) =

∑̀
i=1

θ(ci) · i2;

MC+

1 (GC
2 ) =

∑̀
i=1

θ(ci) · (`− (i− 1))2.

(ii)MC−

2 (GC
2 ) = 2 · (θ(c1)− 1) +

`−1∑
i=1

i(i+ 1) · θ(ci+1) +
`−2∑
j=1

∑̀
i=j+2

j · i;

MC+

2 (GC
2 ) = `(`− 1) · (θ(c1)− 1) +

`−1∑
i=1

i(i+ 1) · θ(c(`−(i−1))) +
`−2∑
j=1

∑̀
i=j+2

j · i.

(iii)MC−

3 (GC
2 ) =

∑̀
i=1

θ(ci)− `+
`−1∑
j=1

j∑
i=1

i− (`− 2);

MC+

3 (GC
2 ) = (θ(c1)− 1)2 +

∑̀
i=2

(`− (i− 1)) · θ(ci) +
`−2∑
j=1

j∑
i=i

i.

Proof. For parts (i), (ii) and (iii), the additional sums terms follow from the additional edges added,
on completing the graph on the path v1,i, 1 ≤ i ≤ `. Note that for MC−

3 (GC
2 ) the initial expression

obtain isMC−
3 (GC

2 ) =
∑̀
i=1

θ(ci)−`+
`−2∑
j=1

(
(i+(`−2))≤`∑

i=j+2

|i−j|) which then simplifies to the result.

4. Application to Certain Positive Non-Increasing Finite Integer Sequences

In this section, we consider two positive non-increasing finite integer sequences. It lays the
basis for investigating other such sequences.

4.1. Positive integers
The first sequence is defined as a mirror image of the positive integers. Let s1 = {an}, ai =

` − (i − 1), 1 ≤ i ≤ `. Also, let θ(ci) = ai. Consider the corresponding colouring cluster
C = (Ci), 1 ≤ i ≤ `.
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Theorem 4.1. Let C = (Ci), 1 ≤ i ≤ `, and θ(ci) = ai, ai ∈ s1. Then, for the colour cluster C the
graph GC

1 obtained from the Type-I construction has

(i)MC−

1 (GC
1 )s1 =

∑̀
i=1

(`− (i− 1)) · i2;

MC+

1 (GC
1 )s1 =

∑̀
i=1

(`− (i− 1))3.

(ii)MC−

2 (GC
1 )s1 = 2(`− 1) +

∑̀
i=2

i · (`− (i− 1)) +
`−1∑
j=2

∑̀
i=j+1

j · i;

MC+

2 (GC
1 )s1 = `(`− 1)2 +

∑̀
i=2

` · (`− (i− 1))2 +
`−2∑
j=1

`−1∑
i=j+1

j · i.

(iii)MC−

3 (GC
1 )s1 = `− 1 +

∑̀
i=2

(i− 1) · (`− (i− 1)) +
`−2∑
j=2

`−1∑
i=j+1

i · (`+ 1− 2i);

MC+

3 (GC
1 )s1 = (`− 1)2 +

∑̀
i=2

(`− (i− 1))2 +
`−2∑
j=2

`−1∑
i=j+1

i · (`+ 1− 2i).

and for the colour cluster C the graph GC
2 obtained from the Type-II construction has

(i)MC−

1 (GC
2 )s1 =

∑̀
i=1

(`− (i− 1)) · i2;

MC+

1 (GC
2 )s1 =

∑̀
i=1

(`− (i− 1)3.

(ii)MC−

2 (GC
2 )s1 = 2 · (`− 1) +

`−1∑
i=1

i(i+ 1) · (`− i) +
`−2∑
j=1

∑̀
i=j+2

j · i;

MC+

2 (GC
2 )s1 = `(`− 1) · (`− 1) +

`−1∑
i=1

2i(i+ 1)(i− 1) +
`−2∑
j=1

∑̀
i=j+2

j · i.

(iii)MC−

3 (GC
2 )s1 =

∑̀
i=1

(`− (i− 1))− `+
`−1∑
j=1

j∑
i=1

i− (`− 2);

MC+

3 (GC
2 )s1 = (`− 1)2 +

∑̀
i=2

(`− (i− 1))2 +
`−2∑
j=1

j∑
i=i

i.

Proof. For Type-I graphical embodiment, we have

Part (i)(a): Follows from definition of the first chromatic Zagreb index, the Type-I graphical em-
bodiment and the fact that θ(ci) = `− (i− 1).
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Part (i)(b): Follows from definition of the first chromatic Zagreb index, the Type-I graphical em-
bodiment and the fact that θ(ci) = `− (i− 1) and the mapping ci 7→ c`−(i−1).

Part (ii)(a): Follows from definition of the second chromatic Zagreb index, the Type-I graphical
embodiment and the fact that θ(ci) = `− (i− 1).

Part (ii)(b): Follows from definition of the second chromatic Zagreb index, the Type-I graphical
embodiment and the fact that θ(ci) = `− (i− 1) and the mapping ci 7→ c`−(i−1).

Part (iii)(a): Follows from definition of the third chromatic Zagreb index, the Type-I graphical
embodiment and the fact that θ(ci) = `− (i− 1).

Part (iii)(b): Follows from definition of the third chromatic Zagreb index, the Type-I graphical
embodiment and the fact that θ(ci) = ` − (i − 1) and the mapping c` 7→ c1, c1 7→ c2, c2 7→
c3 . . . c`−2 7→ c`−1.

and for Type-II graphical embodiment, we have

Part (i)(a): Follows from definition of the first chromatic Zagreb index, the Type-II graphical
embodiment and the fact that θ(ci) = `− (i− 1).

Part (i)(b): Follows from definition of the first chromatic Zagreb index, the Type-II graphical
embodiment and the fact that θ(ci) = `− (i− 1) and the mapping ci 7→ c`−(i−1).

Part (ii)(a): Follows from definition of the second chromatic Zagreb index, the Type-II graphical
embodiment and the fact that θ(ci) = `− (i− 1).

Part (ii)(b): Follows from definition of the second chromatic Zagreb index, the Type-II graphical
embodiment and the fact that θ(ci) = ` − (i − 1) and the mapping ci 7→ c`−(i−1). Also note that
`−2∑
j=1

∑̀
i=j+2

j · i = (
`−1∑
i=1

(i(`− i)−
`−2∑
i=1

i).

Part (iii)(a): Follows from definition of the third chromatic Zagreb index, the Type- II graphical
embodiment and the fact that θ(ci) = `− (i− 1).

Part (iii)(b): Follows from definition of the third chromatic Zagreb index, the Type-II graphical
embodiment and the fact that θ(ci) = ` − (i − 1) and the mapping c` 7→ c1, c1 7→ c2, c2 7→
c3 . . . c`−2 7→ c`−1.

Remark 4.1. The summation identities
∑̀
i=1

i = n(n+1)
2

,
∑̀
i=1

i2 = n(n+1)(2n+1)
6

,
∑̀
i=1

i3 = (n(n+1)
2

)2,∑̀
i=1

i4 = 6`5+15`4+10`3−`
30

find partial closure of the results above. For example, MC−
1 (GC

1 )s1 =∑̀
i=1

(`− (i− 1)) · i2 = `4+4`3+5`2+2`
12

. The partial closure of the other results can also be established

in a straight forward manner.

4.2. Fibonacci numbers
The second sequence we consider is the mirror image of the Fibonacci sequence. Let f0 = 0,

f1 = 1 and fn = fn−1 + fn−2, where n ≥ 2. Let s2 = {an}, ai = f`−(i−1), 1 ≤ i ≤ `.
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Theorem 4.2. Let C = (Ci), 1 ≤ i ≤ `, and θ(ci) = ai, ai ∈ s2. Then, for the colour cluster C the
graph GC

1 obtained from the Type-I construction has

(i)MC−

1 (GC
1 )s2 =

∑̀
i=1

f`−(i−1) · i2;

MC+

1 (GC
1 )s2 =

∑̀
i=1

f`−(i−1) · (`− (i− 1))2.

(ii)MC−

2 (GC
1 )s2 = 2(f` − 1) +

∑̀
i=2

i · f(`−(i−1)) +
`−1∑
j=2

∑̀
i=j+1

j · i;

MC+

2 (GC
1 )s2 = ` · (f` − 1)2 +

∑̀
i=2

f`−(i−1) · `(`− (i− 1)) +
`−2∑
j=1

`−1∑
i=j+1

j · i.

(iii)MC−

3 (GC
1 )s2 = `− 1 +

∑̀
i=2

f`−(i−1) · (i− 1) +
`−2∑
j=2

`−1∑
i=j+1

i · (`+ 1− 2i);

MC+

3 (GC
1 )s2 = (`− 1)2 +

∑̀
i=2

f`−(i−1) · (`− (i− 1)) +
`−2∑
j=2

`−1∑
i=j+1

i · (`+ 1− 2i).

and for the colour cluster C the graph GC
2 obtained from the Type-II construction has

(i)MC−

1 (GC
2 )s2 =

∑̀
i=1

f`−(i−1) · i2;

MC+

1 (GC
2 )s2 =

∑̀
i=1

f`−(i−1) · (`− (i− 1))2.

(ii)MC−

2 (GC
2 )s2 = 2 · (f` − 1) +

`−1∑
i=1

fi−1 · i(i+ 1) +
`−2∑
j=1

∑̀
i=j+2

j · i;

MC+

2 (GC
2 )s2 = `(`− 1) · (f` − 1) +

`−1∑
i=1

fi · i(i+ 1) +
`−2∑
j=1

∑̀
i=j+2

j · i.

(iii)MC−

3 (GC
2 )s2 =

∑̀
i=1

f`−(i−1) − `+
`−1∑
j=1

j∑
i=1

i− (`− 2);

MC+

3 (GC
2 )s2 = (f` − 1)2 +

∑̀
i=2

f`−(i−1) · (`− (i− 1)) +
`−2∑
j=1

j∑
i=i

i.

Proof. For Type-I graphical embodiment, we have

Part (i)(a): Follows from definition of the first chromatic Zagreb index, the Type-I graphical em-
bodiment and the fact that θ(ci) = f`−(i−1).
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Part (i)(b): Follows from definition of the first chromatic Zagreb index, the Type-I graphical em-
bodiment and the fact that θ(ci) = f`−(i−1) and the mapping ci 7→ c`−(i−1).

Part (ii)(a): Follows from definition of the second chromatic Zagreb index, the Type-I graphical
embodiment and the fact that θ(ci) = f`−(i−1).

Part (ii)(b): Follows from definition of the second chromatic Zagreb index, the Type-I graphical
embodiment and the fact that θ(ci) = f`−(i−1) and the mapping ci 7→ c`−(i−1).

Part (iii)(a): Follows from definition of the third chromatic Zagreb index, the Type-I graphical
embodiment and the fact that θ(ci) = f`−(i−1).

Part (iii)(b): Follows from definition of the third chromatic Zagreb index, the Type-I graphical em-
bodiment and the fact that θ(ci) = f`−(i−1) and the mapping c` 7→ c1, c1 7→ c2, c2 7→ c3 . . . c`−2 7→
c`−1.

For Type-II graphical embodiment, we have

Part (i)(a): Follows from definition of the first chromatic Zagreb index, the Type-II graphical
embodiment and the fact that θ(ci) = f`−(i−1).

Part (i)(b): Follows from definition of the first chromatic Zagreb index, the Type-II graphical
embodiment and the fact that θ(ci) = f`−(i−1) and the mapping ci 7→ c`−(i−1).

Part (ii)(a): Follows from definition of the second chromatic Zagreb index, the Type-II graphical
embodiment and the fact that θ(ci) = f`−(i−1).

Part (ii)(b): Follows from definition of the second chromatic Zagreb index, the Type-II graphical
embodiment and the fact that θ(ci) = f`−(i−1) and the mapping ci 7→ c`−(i−1). Also note that
`−2∑
j=1

∑̀
i=j+2

j · i = (
`−1∑
i=1

(i(`− i)−
`−2∑
i=1

i).

Part (iii)(a): Follows from definition of the third chromatic Zagreb index, the Type-I graphical
embodiment and the fact that θ(ci) = f`−(i−1).

Part (iii)(b): Follows from definition of the third chromatic Zagreb index, the Type-II graphical em-
bodiment and the fact that θ(ci) = f`−(i−1) and the mapping c` 7→ c1, c1 7→ c2, c2 7→ c3 . . . c`−2 7→
c`−1.

Remark 4.2. The Fibonacci summation identities
∑̀
i=a

fi = f`+2 − fa+1,
n∑
i=1

f 2
i = fn+1 · fn+2,∑̀

i=1

f 3
i = f3`+2 + 6(−1)`+1 · f`−1 + 5 and

∑̀
i=1

f 4
i = f4`+2 + 4(−1)`+1 · f2`+1 + 6` + 3 find partial

closure of the results above. These exercises are left for the reader. For useful references see
[7, 10, 13].

5. Conclusion

Note that any tree T that allows C as a proper colouring is a construction type, say Type-i. It
then follows that any connected subtree T ′ ⊆ T of order ` that has exactly one coloured vertex of
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each distinct colour in C, can be completed by adding exactly 1
2
(`− 1)(`− 2) edges to obtain GC.

It is important to note that not all constructions types have this property and therefore, cannot yield
the graphical embodiment GC.

Illustration 1. Consider the colour cluster C = ((c1, c1, c1, c1, c1, c1), (c2, c2, c2, c2),
(c3, c3, c3), (c4, c4)). The path v1,1v2,1v1,2v2,2v1,3v2,3v1,4v2,4v1,5v3,1v1,6v3,2v4,1v3,3v4,2 represents a
path-type construction to obtain Gp with minimum edges allowing C as a proper colouring. How-
ever, a path subgraph that contains colours c1, c2, c3 cannot also contain colour c4. Similarly, a path
subgraph that contains colours c1, c3, c4 cannot also contain colour c2. Finally, path subgraphs that
contain either c2, c3, c4 or c1, c2, c4 do not exist. Therefore, we need more than 1

2
(` − 1)(` − 2)

additional edges in order to construct GC
p .

The definitions of minimum and maximum chromatic Zagreb indices are reliant on the premises
of a given (fixed) graph construction. This study generalised to two primary variants, i.e., graph
construction and colour cluster for a given number of distinct colours. Note that the respective
|Ci| = ri = θ(ci) ≥ 1, ∀ i ∈ N.

Hence, although this study considered the Type-I and II construction followed by the analysis of
chromatic Zagreb indices of both the positive integers and the Fibonacci sequence, the construction
type which results in the min{min}, max{min} and the min{max}, max{max} values for the
chromatic Zagreb indices MC−

i , MC+

i , i = 1, 2, 3 respectively, remains elusive at this stage.
Generally, the results are computationally complex and it is indicative that deeper results will

most likely require advanced computer analysis. The application to colour clusters for which
the colour weights represent other defined non-negative integer sequences or specialised number
sequences opens a wide scope for further research.

Finally it is suggested that the Type-II graphical embodiment can be described recursively as
the colour cluster extends from C = (Ci), 1 ≤ i ≤ ` to C′ = (Ci), 1 ≤ i ≤ `+ 1.
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