INDONESIAN JOURNAL
OF COMBINATORICS

Another H-super magic decompositions of the lexicographic product of graphs

Hendy ${ }^{\text {a }}$, Kiki A. Sugeng ${ }^{\text {b }}$, A.N.M. Salman ${ }^{\text {c }}$, Nisa Ayunda ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Universitas Pesantren Tinggi Darul 'Ulum, Jombang, Indonesia
${ }^{b}$ Department of Mathematics, Universitas Indonesia, Depok, Indonesia
${ }^{c}$ Department of Mathematics, Institut Teknologi Bandung, Bandung, Indonesia
hendy@mipa.unipdu.ac.id, kiki@sci.ui.ac.id, msalman@math.itb.ac.id, nisaayunda@mipa.unipdu.ac.id

Abstract

Let H and G be two simple graphs. The concept of an H-magic decomposition of G arises from the combination between graph decomposition and graph labeling. A decomposition of a graph G into isomorphic copies of a graph H is H-magic if there is a bijection $f: V(G) \cup E(G) \longrightarrow$ $\{1,2, \ldots,|V(G) \cup E(G)|\}$ such that the sum of labels of edges and vertices of each copy of H in the decomposition is constant. A lexicographic product of two graphs G_{1} and G_{2}, denoted by $G_{1}\left[G_{2}\right]$, is a graph which arises from G_{1} by replacing each vertex of G_{1} by a copy of the G_{2} and each edge of G_{1} by all edges of the complete bipartite graph $K_{n, n}$ where n is the order of G_{2}. In this paper we provide a sufficient condition for $\overline{C_{n}}\left[\overline{K_{m}}\right]$ in order to have a $P_{t}\left[\overline{K_{m}}\right]$-magic decompositions, where $n>3, m>1$, and $t=3,4, n-2$.

Keywords: complement of graph, lexicographic product, H-magic decomposition Mathematics Subject Classification: 05C78,05C70
DOI: 10.19184/ijc.2018.2.2.2

1. Introduction

Let G be a simple graph and H be a subgraph of G. A decomposition of G into isomorphic copies of H is called H - magic if there is a bijection $f: V(G) \cup E(G) \longrightarrow\{1,2, \ldots, \mid V(G) \cup$ $E(G) \mid\}$ such that the sum of labels of edges and vertices of each copy of H in the decomposition is

[^0]constant. A lexicographic product of two graphs G_{1} and G_{2} is defined as graph which constructed from the graph G_{1} and then replacing each vertex of G_{1} by a copy of G_{2} and each edge of G_{1} by edges of complete bipartite graph $K_{n, n}$, where $|V(G)|=n$. The lexicographic product of G_{1} and G_{2} with this construction is denoted by $G_{1}\left[G_{2}\right][1]$.

A labeling of a graph $G=(V, E)$ is a bijection from a set of elements of graphs to a set of numbers. The edge magic and super edge magic labelings were first introduced by Kotzig and Roza [9] and Enomoto, Lladò, Nakamigawa, and Ringel [3], respectively. There are some results in edge magic and super edge magic, such as in [2, 3, 12, 13]. The notion of an $H-$ (super) magic labeling was introduced by Gutièrrez and Lladò [5] in 2005. In 2010, Maryati and Salman [11] used multiset partition concept to obtain a super magic labeling of path amalgamation of isomorphic graphs. Inayah et al. [8]have improved the concept of labeling graphs became $H-$ (anti) magic decomposition. In almost the same time, Liang [10] discused cycle-supermagic decompositions of complete multipartite graphs and in 2015, Hendy [6] has discused the $H-\operatorname{super}($ anti)magic decompositions of antiprism graphs. For a complete results in graph labeling, see [4].

In this research we interest in decomposing the lexicographic product of graphs $\overline{C_{n}}\left[\overline{K_{m}}\right]$ then labeling of the edges and vertices of each isomorphic copies of $P_{t}\left[\overline{K_{m}}\right]$ to obtain $P_{t}\left[\overline{K_{m}}\right]$ - magic decomposition, where $n>3, m>1$, and $t=3,4, n-2$.

Preliminaries

Let G be a simple graph. Complement of G, denoted by \bar{G}, is graph which $V(\bar{G})=V(G)$ and $\forall u, v \in V(G) u v$ is edge of \bar{G} if and only if $u v$ is not edge of G. A family $\mathbb{B}=\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ of subgraphs of G is an H-decomposition of G if all subgraphs are isomorphic to graph $H, E\left(G_{i}\right) \cap$ $E\left(G_{j}\right)=\emptyset$, for $i \neq j$, and $\bigcup_{i=1}^{t} E\left(G_{i}\right)=E(G)$. In such case, we write $G=G_{1} \oplus G_{2} \oplus \ldots \oplus G_{t}$ and G is said to be H-decomposable. if G is an H-decomposable graph, then we also write $H \mid G$.

Let \mathbb{B} is an H-decomposition of G. The graph G is said to be H-magic if there exists a bijection $f: V(G) \cup E(G) \longrightarrow\{1,2, \ldots,|V(G) \cup E(G)|\}$ such that $\forall B \in \mathbb{B}, \sum_{v \in V(B)} f(v)+\sum_{e \in E(B)} f(e)$ is constant. Such a function f is called an H-magic labeling of G. The sum of all the vertex and edges labels of H (under a labeling f) is denoted by $\sum f(H)$. The constant value that every copy of H takes under the labeling f is denoted by $m(f)$.

The one of the concept of multi set partition, k-balance multi set, was presented by Maryati et al. [11]. In this paper, $\sum_{x \in X} x$, denoted by $\sum X$. Multi set is a set which may has the same elements. For positive integer n and k_{i} with $i \in[1, n]$, multi set $\left\{a_{1}^{k_{1}}, a_{2}^{k_{2}}, \ldots, a_{n}^{k_{n}}\right\}$ is a set which has k_{i} elements a_{i} for $i \in[1, n]$. Suppose V and W are two multi sets with $V=\left\{a_{1}^{k_{1}}, a_{2}^{k_{2}}, \ldots, a_{n}^{k_{n}}\right\}$ and $W=\left\{b_{1}^{l_{1}}, b_{2}^{l_{2}}, \ldots, b_{m}^{l_{m}}\right\}$. Defined by: $V \biguplus W=\left\{a_{1}^{k_{1}}, a_{2}^{k_{2}}, \ldots, a_{n}^{k_{n}}, b_{1}^{l_{1}}, b_{2}^{l_{2}}, \ldots, b_{m}^{l_{m}}\right\}$. Let $k \in N$ and Y is a multi set of positive integers. Y is a k-balance multi set if there exists k subsets of Y such as: $Y_{1}, Y_{2}, \ldots, Y_{k}$, such that for all $i \in[1, k],\left|Y_{i}\right|=\frac{|Y|}{k}, \sum Y_{i}=\frac{\sum Y}{k} \in N$ and $\biguplus_{i=1}^{k} Y_{i}=Y$.
Lemma 1.1. [7] $P_{n}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$ if and only if $P_{n} \mid \overline{C_{n}}$
Lemma 1.2. [7] Let t be any integer with $t>1$. If $P_{t}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$ then $n(n-3) \equiv 0(\bmod 2(t-1))$
Theorem 1.1. [7] Let n and m be integers with $n>3$ and $m>1$. The graph $\overline{C_{n}}\left[\overline{K_{m}}\right]$ has $P_{2}\left[\overline{K_{m}}\right]$ super magic decomposition if and only if m is even or m is odd and $n \equiv 1(\bmod 4)$, or m is odd and $n \equiv 2(\bmod 4)$, or m is odd and $n \equiv 3(\bmod 4)$.

2. Results

Lemma 2.1. $P_{3}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$ if and only if $n \neq 4, n \equiv 0(\bmod 4)$ or $n \equiv 3(\bmod 4)$.
Proof. (\Rightarrow) Let $P_{3}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$, then from Lemma 2.1 we have that $P_{3} \mid \overline{C_{n}}$. From Lemma 2.2 we have that $n \equiv 0(\bmod 4)$ or $n \equiv 3(\bmod 4)$. Because of $\overline{C_{4}}$ doesn't have P_{3}, this is not occur for $n=4$.
(\Leftarrow) Now let $n \neq 4, n \equiv 0(\bmod 4)$ dan $V\left(\overline{C_{n}}\right)=\left\{v_{1}, \ldots, v_{4 k}\right\}, k \in Z^{+}$. Let $N\left(v_{i}\right)=V\left(\overline{C_{n}}\right) \backslash$ $\left\{v_{i-1}, v_{i+1}\right\}$. Follow this algorithm decompose $\overline{C_{n}}$.

Algorithm 1:

1 Choose the path $P_{1}: v_{3}-v_{1}-v_{4}$ and let v_{1} be the center of the rotation. Rotate P_{1} such that v_{1} on v_{3}, v_{3} on v_{5} and v_{4} on v_{6}, thus we have $P_{2}: v_{5}-v_{3}-v_{6}$. Do the next rotation until v_{1} on $v_{5}, \ldots, v_{4 i-1}, \ldots, v_{4 k-1}$. Then we have $2 k$ of P_{3}-paths.
2 Choose the cycle $v_{2}-v_{4}-\ldots-v_{4 k}$. Decompose this $2 k$-cycle to k of P_{3}-paths.
3 Do the rotation again ($v_{1} \rightarrow v_{3} \rightarrow v_{5} \rightarrow \ldots$), with choosing two vertices which close with the vertices that is rotated in step 1 . If this rotation is not the last rotation, do the rotation again until v_{1} on position of $v_{4 k-1}$, such that we have $2 k$ of P_{3}-path. If this rotation is the last rotation, first do the rotation in step 1 until v_{1} on position of $v_{2 k-1}$ such that we have k of P_{3}-path. Then rotate $P^{\prime}=v_{n-2}-v_{2}-v_{n-1}$ with v_{2} as a center of this rotation until v_{2} on position of $v_{2 k}$ and we have $k P_{3}$-path.
From the Algorithm 1 above, we have that $P_{3} \mid \overline{C_{n}}$. Then from Lemma $2.1 P_{3}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$ for $n \neq 4, n \equiv 0(\bmod 4)$.

Let $n \equiv 3(\bmod 4)$ dan $V\left(\overline{C_{n}}\right)=\left\{v_{1}, \ldots, v_{4 k+3}\right\}, k \in Z^{+}$. Let $N\left(v_{i}\right)=V\left(\overline{C_{n}}\right) \backslash\left\{v_{i-1}, v_{i+1}\right\}$. Decompose $\overline{C_{n}}$ with the following steps.

Algorithm 2

Choose the path $Q_{1}=v_{3}-v_{1}-v_{4}$ with v_{1} is the center of rotation. Rotate Q_{1} such that v_{1} on v_{2} and we have $Q_{2}=v_{4}-v_{2}-v_{5}$. Do the next rotation such that v_{1} on $v_{3}, v_{4}, v_{i}, \ldots, v_{4 k+3}$. Do the rotation such that we have $k n P_{3}$-path.
From Algorithm 2, it's clearly that $P_{3} \mid \overline{C_{n}}$. Thus from Lemma $2.1 P_{3}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$ for $n \equiv$ $3(\bmod 4)$.

See Figure 1 to see graph $\overline{C_{8}}$ can be decomposed into $10 P_{3}$-path.
Theorem 2.1. Suppose $n, m \in Z^{+}$and $m>1$. For $n \equiv 3(\bmod 4)$, or $(n \equiv 0(\bmod 4)$ and m is even, Graph $\overline{C_{n}}\left[\overline{K_{m}}\right]$ have $P_{3}\left[\overline{K_{m}}\right]$-magic decomposition.

Proof. Let $n \equiv 3(\bmod 4)$. From Lemma 2.1 we have for $n \equiv 3(\bmod 4), P_{3}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$. Let m be even. Do the next vertex labeling steps and edge labeling steps such in case $\mathbf{1}$ in Theorem 2.1.

Let $V_{1}, V_{2}, \ldots, V_{n}$ be the partitions of $V\left(\overline{C_{n}}\left[\overline{K_{m}}\right]\right)$, where $V\left(\overline{C_{n}}\left[\overline{K_{m}}\right]\right)=V_{1} \cup V_{2} \cup \ldots \cup V_{n}=$ $\left\{v_{1,1}, v_{1,2}, \ldots, v_{1, m}\right\} \cup\left\{v_{2,1}, v_{2,2}, \ldots, v_{2, m}\right\} \cup \ldots \cup\left\{v_{n, 1}, v_{n, 2}, \ldots, v_{n, m}\right\}$. Consider the set $A^{*}=[1, m n]=$

Figure 1. P_{3}-decomposition of $\overline{C_{8}}$
$[1,(2 k) n], k \in Z$. for every $i \in[1, n], A_{i}^{*}=\left\{a_{j}^{i} / 1 \leq j \leq m\right\}$, where

$$
a_{j}^{i}= \begin{cases}k(j-1)+i, & \text { if } \mathrm{j} \text { is odd } \\ 1+n j-i, & \text { if } \mathrm{j} \text { is even. }\end{cases}
$$

is a balance subset of A^{*}.
Define a vertex labeling f_{1} of $\overline{C_{n}}\left[\overline{K_{m}}\right]$ which will label vertices of $V_{1}, V_{2}, \ldots, V_{n}$ using elements of $A_{1}^{*}, A_{2}^{*}, \ldots, A_{n}^{*}$ respectively.

Consider the set $B^{*}=\left[m n+1, m n+\frac{n(n-3) m^{2}}{2}\right]$. For every $i \in\left[1, \frac{n(n-3}{2}\right], B_{i}^{*}=\left\{b_{j}^{i} / 1 \leq j \leq\right.$ $\left.m^{2}\right\}$, with $b_{j}^{i}= \begin{cases}m n+\frac{n(n-3)}{2}(j-1)+i, & \text { if } \mathrm{j} \text { is odd; } \\ (m n+1)+\left(\frac{n(n-3)}{2}\right) j-i, & \text { if } \mathrm{j} \text { is even. }\end{cases}$
$B_{i}^{*}=\left\{b_{j}^{i} / 1 \leq j \leq m^{2}\right\}$ is a balance subset of B^{*}. Define an edge labeling f_{2} of $\overline{C_{n}}\left[\overline{K_{m}}\right]$ with label all edges in $P_{2}\left[\overline{K_{m}}\right]_{i}, i \in\left[1, \frac{n(n-3)}{2}\right]$ with the elements in B_{i}^{*}.

Since for all $i \in\left[1, \frac{n(n-3)}{4}\right], m\left(f_{1}+f_{2}\right)\left(P_{3}\left[\overline{K_{m i}}\right)=3 m\left(f_{1}\right)+2 m\left(f_{2}\right)=3\left(m^{2} n+m\right)+\right.$ $2\left(\frac{m^{2}}{2}\left(2 m n+1+\frac{n(n-3) m^{2}}{2}\right)=3 m^{2} n+3 m+m^{2}\left(2 m n+1+\frac{n(n-3) m^{2}}{2}\right)\right.$ then $\overline{C_{n}}\left[\overline{K_{m}}\right]$ has $P_{3}\left[\overline{K_{m}}\right]-$ magic decomposition.

Now let m is odd. Do the vertex labeling steps and edge labeling steps such in case 4 in Theorem 2.1.
(a) Let $m=3$. Consider the set $A=\left[1, m\left(n+\frac{n(n-3)}{2}\right)\right]=\left[1,3\left(n+\frac{n(n-3)}{2}\right)\right]$. For every $i \in\left[1,\left(n+\frac{n(n-3)}{2}\right)\right], A_{i}=\left\{a_{i}, b_{i}, c_{i}\right\}$ where

$$
\begin{aligned}
& a_{i}=1+i ; \\
& b_{i}= \begin{cases}\left(n+\frac{n(n-3)}{2}\right)+\left\lceil\frac{n(n-3)}{2}\right) \\
\left(n+\frac{n(n-3)}{2}\right)-\left\lfloor\frac{n+\frac{n(n-3)}{2}}{2}\right\rfloor+i, & \text { for } \left.i \in\left[1,\left\lfloor\frac{n(n-3)}{2}\right)\right\rfloor\right] ;\end{cases} \\
& c_{i}= \begin{cases}3\left(n+\frac{n(n-3)}{2}\right)+1-2 i, & \text { for } \left.i \in\left[1,\left\lfloor\frac{n+\frac{n(n-3)}{2}}{2}\right\rfloor\right]\right] ; \\
3\left(n+\frac{n(n-3)}{2}\right)+2\left\lceil\frac{n+\frac{n(n-3)}{2}}{2}\right\rceil-2 i, & \text { for } i \in\left[\left\lceil\frac{n+\frac{n(n-3)}{2}}{2}\right\rceil, n+\frac{n(n-3)}{2}\right] .\end{cases}
\end{aligned}
$$

$A_{i}=\left\{a_{i}, b_{i}, c_{i}\right\}$ is a balance subset of A. Consider the set $B=\left[3\left(n+\frac{n(n-3)}{2}\right)+1,3 n+\right.$ $\left.\left(\frac{n(n-3)}{2}\right) m^{2}\right]$. For every $i \in\left[1, \frac{n(n-3)}{2}\right], B_{i}=\left\{b_{j}^{i} / 1 \leq j \leq m^{2}-3\right\}$, where

$$
b_{j}^{i}= \begin{cases}3\left(n+\frac{n(n-3)}{2}\right)+\left(n+\frac{n(n-3)}{2}\right)(j-1)+i, & \text { if } \mathrm{j} \text { is odd } \\ 3\left(n+\frac{n(n-3)}{2}\right)+1+\left(n+\frac{n(n-3)}{2}\right) j-i, & \text { if } \mathrm{j} \text { is even. }\end{cases}
$$

$B_{i}=\left\{b_{j}^{i} / 1 \leq j \leq m^{2}-3\right\}$ is a balance subset of B. Define a function $h_{1}: V\left(\overline{C_{n}}\left[\overline{K_{m}}\right]\right) \rightarrow$ $\left\{A_{i}, i \in[1, n]\right\} \subset A$ and label all vertices in every V_{i} with the elements of A_{i}. Define a function $h_{2}: E\left(\overline{C_{n}}\left[\overline{K_{m}}\right]\right) \rightarrow\left\{A_{i}, i \in\left[n+1,\left(n+\frac{n(n-3)}{2}\right)\right]\right\} \bigcup B$ and label all edges in every $P_{2}\left[\overline{K_{m}}\right]_{i}$, $i \in\left[1, \frac{n(n-3)}{2}\right]$ with the elements of $A_{n+i} \bigcup B_{i}$.
(b) Let $m>3$ and m be odd. Considering the set $A^{*}=\left[1, m\left(n+\frac{n(n-3)}{2}\right)\right]$. Divide A^{*} to be two sets. $A=\left[1,3\left(n+\frac{n(n-3)}{2}\right)\right]$;

$$
E=\left[3\left(n+\frac{n(n-3)}{2}\right)+1, m\left(n+\frac{n(n-3)}{2}\right)\right] .
$$

Follow the same way with (a),for $m=3, A$ is a $\left(n+\frac{n(n-3)}{2}\right)$-balance multi set and for every $i \in$ $\left[1,\left(n+\frac{n(n-3)}{2}\right)\right], A_{i}$ is a balance subset of A. Consider the set $E=\left[3\left(n+\frac{n(n-3)}{2}\right)+1, m\left(n+\frac{n(n-3)}{2}\right)\right]$. For every $i \in\left[1,\left(n+\frac{n(n-3)}{2}\right)\right]$, $E_{i}=\left\{e_{j}^{i} / 1 \leq j \leq m-3\right\}$, where

$$
e_{j}^{i}= \begin{cases}3\left(n+\frac{n(n-3)}{2}\right)+\left(n+\frac{n(n-3)}{2}\right)(j-1)+i, & \text { if } \mathrm{j} \text { is odd } \\ 3\left(n+\frac{n(n-3)}{2}\right)+1+\left(n+\frac{n(n-3)}{2}\right) j-i, & \text { if } \mathrm{j} \text { is even. }\end{cases}
$$

$E_{i}=\left\{e_{j}^{i} / 1 \leq j \leq m-3\right\}$ is a balance subset of E. Considering the set $M=\left[m\left(n+\frac{n(n-3)}{2}\right)+\right.$ $\left.1, m^{2}\left(n+\frac{n(n-3)}{2}\right)+m n\right]$. For every $i \in\left[1, \frac{n(n-3)}{2}\right], M_{i}=\left\{m_{j}^{i} / 1 \leq j \leq m^{2}-m\right\}$, where $m_{j}^{i}= \begin{cases}m\left(n+\frac{n(n-3)}{2}\right)+\left(\frac{n(n-3)}{2}\right)(j-1)+i, & \text { if } \mathrm{j} \text { is odd; } \\ m\left(n+\frac{n(n-3)}{2}\right)+1+\left(\frac{n(n-3)}{2}\right) j-i, & \text { if } \mathrm{j} \text { is even. }\end{cases}$
$M_{i}=\left\{m_{j}^{i} / 1 \leq j \leq m^{2}-m\right\}$ is a balance subset of M.
Define a function $q_{1}: V\left(\overline{C_{n}}\left[\overline{K_{m}}\right]\right) \rightarrow\left\{A_{i}^{*}=A_{i} \bigcup E_{i}, i \in[1, n]\right\} \subset A^{*}$ and label all vertices in every V_{i} with the elements of $\left\{A_{i}^{*}, i \in[1, n]\right\}$. Define a function $q_{2}: E\left(\overline{C_{n}}\left[\overline{K_{m}}\right]\right) \rightarrow\left\{A_{n+i}^{*}=\right.$ $\left.A_{n+i} \bigcup E_{n+i}\right\} \bigcup M$ and label all edges in every $P_{2}\left[\overline{K_{m}}\right]_{i}, i \in\left[1, \frac{n(n-3)}{2}\right]$ with the elements of $A_{n+i}^{*} \bigcup M_{i}$.

Since $\forall i \in\left[1, \frac{n(n-3)}{4}\right],\left(q_{1}+q_{2}\right)\left(P_{3}\left[\overline{K_{m}}\right]_{i}\right)=5 \sum A_{i}^{*}+2 \sum M_{i}=5\left(\sum A_{i}+\sum E_{i}\right)=$ $5\left(\left(2+4 n+2 n(n-3)+\left\lceil\frac{2 n+n(n-3)}{4}\right\rceil\right)+\left(\frac{m-3}{2}\right)\left(3\left(n+\frac{n(n-3)}{2}\right)+1+m\left(n+\frac{n(n-3)}{2}\right)\right)\right)+2\left(\frac{m^{2}-m}{2}(m(n+\right.$ $\left.\left.\left.\frac{n(n-3)}{2}\right)+1+m^{2}\left(n+\frac{n(n-3)}{2}\right)+m n\right)\right)$ then $\overline{C_{n}}\left[\overline{K_{m}}\right]$ has $P_{3}\left[\overline{K_{m}}\right]$-magic decomposition.
Now let $n \equiv 0(\bmod 4)$ and m be even. From Lemma 3, we have for $n \equiv 0(\bmod 4), P_{3}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$. Do the vertex labeling steps and edge labeling steps such in case 1 in Theorem 2.1. Since for all $i \in\left[1, \frac{n(n-3)}{4}\right], m\left(f_{1}+f_{2}\right)\left(P_{3}\left[\overline{K_{m i}}\right)=3 m\left(f_{1}\right)+2 m\left(f_{2}\right)=3\left(m^{2} n+m\right)+2\left(\frac{m^{2}}{2}(2 m n+1+\right.\right.$ $\left.\frac{n(n-3) m^{2}}{2}\right)=3 m^{2} n+3 m+m^{2}\left(2 m n+1+\frac{n(n-3) m^{2}}{2}\right)$, then $\overline{C_{n}}\left[\overline{K_{m}}\right]$ have $P_{3}\left[\overline{K_{m}}\right]$-magic decomposition.

Figure 2 give an example that graph $\overline{C_{8}}\left[\overline{K_{2}}\right]$ have $P_{3}\left[\overline{K_{2}}\right]$ - super magic decomposition with the constant value $m\left(f_{1}+f_{2}\right)=503$.

Figure 2. $P_{3}\left[\overline{K_{2}}\right]$-super magic decomposition of $\overline{C_{8}}\left[\overline{K_{2}}\right]$

Lemma 2.2. $P_{4}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$ if and only if $n \equiv 0(\bmod 6)$ or $n \neq 3, n \equiv 3(\bmod 6)$
Proof. (\Rightarrow) Let $P_{4}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$, then from Lemma 2.1, $P_{4} \mid \overline{C_{n}}$. From Lemma $2.2 n \equiv 0(\bmod 6)$ or $n \equiv 3(\bmod 6)$. Clearly that this is not occur for $n=3$.
(\Leftarrow) Let $V\left(\overline{C_{n}}\right)=\left\{v_{1}, \ldots, v_{3 k}\right\}, k \in Z^{+}$and $N\left(v_{i}\right)=V\left(\overline{C_{n}}\right) \backslash\left\{v_{i-1}, v_{i+1}\right\}$. Do the algorithm 3 bellow to decompose $\overline{C_{n}}$.

Algorithm 3

Choose the path $R_{1}: v_{1}-v_{3}-v_{6}-v_{4}$ and let v_{1} be the center of the rotation. Rotate R_{1} such that v_{1} on v_{2}, v_{3} on v_{4}, v_{6} on v_{1} and v_{4} on v_{5}, thus we have $R_{2}=v_{2}-v_{4}-v_{1}-v_{5}$. Do the next rotation such that v_{1} on v_{3}, \ldots etc, and redo the process until $\frac{(k-1)}{2}$ rotations.

Figure 3 shows that graph $\overline{C_{9}}$ can be decompose into $9 P_{4}$-path.
Theorem 2.2. Let $n>3$ and $m>1$. For $n \equiv 3(\bmod 12)$ or $n \equiv 6(\bmod 12)$ or $n \equiv 9(\bmod 12)$ or ($n \equiv 0(\bmod 12)$ and m is even, Graph $\overline{C_{n}}\left[\overline{K_{m}}\right]$ have $P_{4}\left[\overline{K_{m}}\right]$-magic decomposition

Proof. Let $n \equiv 3(\bmod 12)$. From Lemma 2.2, we have that for $n \equiv 3(\bmod 12), P_{4}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$. Now, let m be even. Do the next vertex labeling steps and edge labeling steps such in case 1 in Theorem 2.1. Since for all $i \in\left[1, \frac{n(n-3)}{6}\right],\left(f_{1}+f_{2}\right)\left(P_{4}\left[\overline{K_{m i}}\right)=4 m\left(f_{1}\right)+3 m\left(f_{2}\right)=4\left(m^{2} n+\right.\right.$ $m)+3\left(\frac{m^{2}}{2}\left(2 m n+1+\frac{n(n-3) m^{2}}{2}\right)\right.$ then $\overline{C_{n}}\left[\overline{K_{m}}\right]$ have $P_{4}\left[\overline{K_{m}}\right]$-magic decomposition.

Let m be odd. Do the next vertex labeling steps and edge labeling steps such in case 4 in Theorem 2.1. Since for all $i \in\left[1, \frac{n(n-3)}{6}\right], m\left(q_{1}+q_{2}\right)\left(P_{4}\left[\overline{K_{m}}\right]_{i}\right)=7 \sum A_{i}^{*}+3 \sum M_{i}=7(2+$ $\left.4 n+2 n(n-3)+\left\lceil\frac{2 n+n(n-3)}{4}\right\rceil\right)+\left(\frac{m-3}{2}\right)\left(3\left(n+\frac{n(n-3)}{2}\right)+1+m\left(n+\frac{n(n-3)}{2}\right)\right)+\frac{3 m^{2}-3 m}{2}(m(n+$ $\left.\left.\frac{n(n-3)}{2}\right)+1+m^{2}\left(n+\frac{n(n-3)}{2}\right)+m n\right)$, then $\overline{C_{n}}\left[\overline{K_{m}}\right]$ has $P_{4}\left[\overline{K_{m}}\right]$-magic decomposition.

Figure 3. P_{4}-decomposition of $\overline{C_{9}}$

Let $n \equiv 6(\bmod 12)$. From Lemma 2.2, we have that $n \equiv 6(\bmod 12), P_{4}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$. Now let m is even. Do the vertex labeling steps and edge labeling steps in case 1 Theorem 1. Because $\forall i \in\left[1, \frac{n(n-3)}{6}\right],\left(f_{1}+f_{2}\right)\left(P_{4}\left[\overline{K_{m i}}\right)=4 \sum Z_{i}+3 \sum X_{i}\right.$ then $\overline{C_{n}}\left[\overline{K_{m}}\right]$ have $P_{4}\left[\overline{K_{m}}\right]$-magic decomposition. Let m is odd. Do the vertex labeling steps and edge labeling steps such in case $\mathbf{3}$ in Theorem 2.1.

Let $m=3$. Consider the set $D=\left[1, m\left(n+\frac{n(n-3)}{2}\right)\right]=\left[1,3\left(n+\frac{n(n-3)}{2}\right)\right]$. For every $i \in$ $\left[1,\left(n+\frac{n(n-3)}{2}\right)\right], D_{i}=\left\{a_{i}, b_{i}, c_{i}\right\}$ where:

$$
a_{i}=1+i ;
$$

$$
b_{i}= \begin{cases}\left(n+\frac{n(n-3)}{2}\right)+\left\lceil\frac{n(n-3)}{2}\right) \\ 2 & \text { for } i \in\left[1,\left\lfloor\frac{\left.\frac{n(n-3)}{2}\right)}{\frac{2}{2}}\right\rfloor\right] ; \\ \left(n+\frac{n(n-3)}{2}\right)-\left\lfloor\frac{n+\frac{n(n-3)}{2}}{2}\right\rfloor+i, & \text { for } i \in\left[\left\lceil\frac{n+\frac{n(n-3)}{2}}{2}\right\rceil,\left(n+\frac{n(n-3)}{2}\right)\right]\end{cases}
$$

$$
c_{i}= \begin{cases}3\left(n+\frac{n(n-3)}{2}\right)+1-2 i, & \text { for } i \in\left[1,\left\lfloor\frac{n+\frac{n(n-3)}{2}}{2}\right\rfloor\right] ; \\ 3\left(n+\frac{n(n-3)}{2}\right)+2\left\lceil\frac{n+\frac{n(n-3)}{2}}{2}\right\rceil-2 i, & \text { for } i \in\left[\left\lceil\frac{n+\frac{n(n-3)}{2}}{2}\right\rceil, n+\frac{n(n-3)}{2}\right] .\end{cases}
$$

$D_{i}=\left\{a_{i}, b_{i}, c_{i}\right\}$ is a balance subset of D.
Considering the set $E=\left[3\left(n+\frac{n(n-3)}{2}\right)+1,3 n+\left(\frac{n(n-3)}{2}\right) m^{2}\right]$. For every $i \in\left[1, \frac{n(n-3)}{2}\right], E_{i}=$ $\left\{b_{j}^{i} / 1 \leq j \leq m^{2}-3\right\}$, with $b_{j}^{i}= \begin{cases}3\left(n+\frac{n(n-3)}{2}\right)+\left(n+\frac{n(n-3)}{2}\right)(j-1)+i, & \text { if } \mathrm{j} \text { is odd; } \\ 3\left(n+\frac{n(n-3)}{2}\right)+1+\left(n+\frac{n(n-3)}{2}\right) j-i, & \text { if } \mathrm{j} \text { is even. }\end{cases}$
E_{i} is a balance subset of E.
Define a function $h_{1}: V\left(\overline{C_{n}}\left[\overline{K_{m}}\right]\right) \rightarrow\left\{A_{i}, i \in[1, n]\right\} \subset A$ and label all vertices in every V_{i} with the elements of A_{i}. Define a function $h_{2}: E\left(\overline{C_{n}}\left[\overline{K_{m}}\right]\right) \rightarrow\left\{A_{i}, i \in\left[n+1,\left(n+\frac{n(n-3)}{2}\right)\right]\right\} \cup B$ and label all edges in $P_{2}\left[\overline{K_{m}}\right]_{i}, i \in\left[1, \frac{n(n-3)}{2}\right]$ with the elements of $A_{n+i} \bigcup B_{i}$.

Let $m>3$ and m be odd. Consider the set $A^{*}=\left[1, m\left(n+\frac{n(n-3)}{2}\right)\right]$. Divide A^{*} to be the two
sets A and E where $\begin{aligned} & A=\left[1,3\left(n+\frac{n(n-3)}{2}\right)\right] ; \\ & E=\left[3\left(n+\frac{n(n-3)}{2}\right)+1, m\left(n+\frac{n(n-3)}{2}\right)\right] .\end{aligned}$
With the same way for $m=3, A$ is $\left(n+\frac{n(n-3)}{2}\right)$-balance set and for every $i \in\left[1,\left(n+\frac{n(n-3)}{2}\right)\right]$, A_{i} is a balance subset of A. Consider the set $E=\left[3\left(n+\frac{n(n-3)}{2}\right)+1, m\left(n+\frac{n(n-3)}{2}\right)\right]$. For every $i \in\left[1,\left(n+\frac{n(n-3)}{2}\right)\right], E_{i}=\left\{e_{j}^{i} / 1 \leq j \leq m-3\right\}$, where

$$
e_{j}^{i}= \begin{cases}3\left(n+\frac{n(n-3)}{2}\right)+\left(n+\frac{n(n-3)}{2}\right)(j-1)+i, & \text { if } \mathrm{j} \text { is odd } \\ 3\left(n+\frac{n(n-3)}{2}\right)+1+\left(n+\frac{n(n-3)}{2}\right) j-i, & \text { if } \mathrm{j} \text { is even. }\end{cases}
$$

$E_{i}=\left\{e_{j}^{i} / 1 \leq j \leq m-3\right\}$ is a balance subset of E. Considering the set $M=\left[m\left(n+\frac{n(n-3)}{2}\right)+\right.$ $\left.1, m^{2}\left(n+\frac{n(n-3)}{2}\right)+m n\right]$. For every $i \in\left[1, \frac{n(n-3)}{2}\right], M_{i}=\left\{m_{j}^{i} / 1 \leq j \leq m^{2}-m\right\}$, where $m_{j}^{i}= \begin{cases}m\left(n+\frac{n(n-3)}{2}\right)+\left(\frac{n(n-3)}{2}\right)(j-1)+i, & \text { if } \mathrm{j} \text { is odd; } \\ m\left(n+\frac{n(n-3)}{2}\right)+1+\left(\frac{n(n-3)}{2}\right) j-i, & \text { if } \mathrm{j} \text { is even. }\end{cases}$
is a balance subset of M. Define a function $q_{1}: V\left(\overline{C_{n}}\left[\overline{K_{m}}\right]\right) \rightarrow\left\{A_{i}^{*}=A_{i} \bigcup E_{i}, i \in[1, n]\right\} \subset$ A^{*} and label all vertices in every V_{i} with the elements of $\left\{A_{i}^{*}, i \in[1, n]\right\}$.

Define a function $q_{2}: E\left(\overline{C_{n}}\left[\overline{K_{m}}\right]\right) \rightarrow\left\{A_{n+i}^{*}=A_{n+i} \bigcup E_{n+i}\right\} \bigcup M$ and label all edges in every $P_{2}\left[\overline{K_{m}}\right]_{i}, i \in\left[1, \frac{n(n-3)}{2}\right]$ with the elements of $A_{n+i}^{*} \cup M_{i}$.

Since for all $i \in\left[1, \frac{n(n-3)}{6}\right],\left(q_{1}+q_{2}\right)\left(P_{4}\left[\overline{K_{m}}\right]_{i}\right)=7 \sum A_{i}^{*}+3 \sum M_{i}$ then $\overline{C_{n}}\left[\overline{K_{m}}\right]$ has $P_{4}\left[\overline{K_{m}}\right]-$ magic decomposition.

Now let $n \equiv 9(\bmod 12)$. From Lemma 2.2 we have that for $n \equiv 9(\bmod 12), P_{4}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$. Now, let m be even. Do the vertex labeling steps and edge labeling steps such in case $\mathbf{1}$ in Theorem 2.1. Because $\forall i \in\left[1, \frac{n(n-3)}{6}\right],\left(f_{1}+g\right)\left(P_{4}\left[\overline{K_{m i}}\right)=4 \sum Z_{i}+3 \sum X_{i}\right.$ then $\overline{C_{n}}\left[\overline{K_{m}}\right]$ have $P_{4}\left[\overline{K_{m}}\right]$ magic decomposition. Suppose m is odd. Do the vertex labeling steps and edge labeling steps such in case 2 of Theorem 2.1. Since for all $i \in\left[1, \frac{n(n-3)}{6}\right],\left(f_{2}+h\right)\left(P_{4}\left[\overline{K_{m}}\right]_{i}\right)=3 \sum Y_{i}+2 \sum P_{i}^{*}$ and $\left(f_{3}+h\right)\left(P_{4}\left[\overline{K_{m}}\right]_{i}\right)=3\left(\sum W_{i}+\sum X_{i}\right)+2 \sum P_{i}^{*}$ then $\overline{C_{n}}\left[\overline{K_{m}}\right]$ has $P_{4}\left[\overline{K_{m}}\right]$-magic decomposition.

Now let $n \equiv 0(\bmod 12)$ and m be even. Clearly from Lemma 2.2 that for $n \equiv 0(\bmod 12)$, $P_{4}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$. Do the vertex labeling steps and edge labeling steps such in case 1 of Theorem 1. Because $\forall i \in\left[1, \frac{n(n-3)}{6}\right],\left(f_{1}+g\right)\left(P_{4}\left[\overline{K_{m i}}\right)=4 \sum Z_{i}+3 \sum X_{i}\right.$ then $\overline{C_{n}}\left[\overline{K_{m}}\right]$ have $P_{4}\left[\overline{K_{m}}\right]$-magic decomposition.

Lemma 2.3. $P_{n-2}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$ if and only if $n \equiv 0(\bmod 2)$
Proof. (\Rightarrow) Suppose $\overline{C_{n}}$ where $n \equiv 1(\bmod 2)$ are P_{n-2}-decomposable graphs, then

$$
\begin{aligned}
\frac{\left|E\left(\overline{C_{n}}\right)\right|}{3} & =\frac{(2 k+1)(2 k-2) /(2)}{2 k-2}, s \in Z^{+} \\
& =\frac{2 k+1}{2} \\
& =k+\frac{1}{2} \notin Z^{+} .
\end{aligned}
$$

(contradiction).
(\Leftarrow) Let $V\left(\overline{C_{n}}\right)=\left\{v_{1}, \ldots, v_{2 k}\right\}, k \in Z^{+}$and $N\left(v_{i}\right)=V\left(\overline{C_{n}}\right) \backslash\left\{v_{i-1}, v_{i+1}\right\}$. Do the next steps to decompose $\overline{C_{n}}$. Choose the path $L_{1}=v_{1}-v_{3}-v_{n}-v_{4}-v_{n-1}-\ldots$ and let v_{1} be the center of the rotation. Rotate $L 1$ such that v_{1} on v_{2}, v_{3} on v_{4}, v_{n} on v_{1} and etc. Do the next rotation such that v_{1} on v_{3}, \ldots etc, and continue the process until all edge are used up.

Figure 4. P_{9}-decomposition of $\overline{C_{12}}$

For example, $\overline{C_{12}}$ in Figure 4 can be decomposed to be $6 P_{9}$-path.
Theorem 2.3. Let $n>3$ and $m>1$. For $n \equiv 2(\bmod 4)$ or $(n \equiv 0(\bmod 4)$ and m is even $), \overline{C_{n}}\left[\overline{K_{m}}\right]$ have $P_{n-2}\left[\overline{K_{m}}\right]$-magic decomposition.

Proof. Let $n \equiv 2(\bmod 4)$. From Lemma 2.2 we have that for $n \equiv 2(\bmod 4), P_{n-2}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$. Now, let m is even. Do the vertex labeling steps and edge labeling steps such in case $\mathbf{1}$ of Theorem 2.1. Because of $\forall i \in\left[1, \frac{n}{2}\right],\left(f_{1}+f_{2}\right)\left(P_{n-2}\left[\overline{K_{m i}}\right)=(n-2) m\left(f_{1}\right)+(n-3) m\left(f_{2}\right)=(n-2)\left(m^{2} n+\right.\right.$ $m)+(n-3)\left(\frac{m^{2}}{2}\left(2 m n+1+\frac{n(n-3) m^{2}}{2}\right)\right.$. Thus $\overline{C_{n}}\left[\overline{K_{m}}\right]$ has $P_{n-2}\left[\overline{K_{m}}\right]$-magic decomposition.

Let m be odd. Do the vertex labeling steps and edge labeling steps such in case 3 of Theorem 2.1. Since for all $i \in\left[1, \frac{n}{2}\right],\left(q_{1}+q_{2}\right)\left(P_{n-2}\left[\overline{K_{m i}}\right)=(2 n-5) \sum A_{i}^{*}+(n-3) \sum M_{i}=(2 n-5)((2+\right.$ $\left.\left.4 n+2 n(n-3)+\left\lceil\frac{2 n+n(n-3)}{4}\right\rceil\right)+\left(\frac{m-3}{2}\right)\left(3\left(n+\frac{n(n-3)}{2}\right)+1+m\left(n+\frac{n(n-3)}{2}\right)\right)\right)+(n-3)\left(\frac{m^{2}-m}{2}(m(n+\right.$ $\left.\left.\left.\frac{n(n-3)}{2}\right)+1+m^{2}\left(n+\frac{n(n-3)}{2}\right)+m n\right)\right)$. Thus $\overline{C_{n}}\left[\overline{K_{m}}\right]$ has $P_{4}\left[\overline{K_{m}}\right]$-magic decomposition.

Now let $n \equiv 0(\bmod 4)$ and m be even. Clearly from Lemma 2.2 that for $n \equiv 0(\bmod 4)$, $P_{n-2}\left[\overline{K_{m}}\right] \mid \overline{C_{n}}\left[\overline{K_{m}}\right]$. Do the vertex labeling steps and edge labeling steps such in case $\mathbf{1}$ of Theorem 2.1. Since for all $i \in\left[1, \frac{n}{2}\right],\left(f_{1}+f_{2}\right)\left(P_{n-2}\left[K_{m i}\right)=(n-2) m\left(f_{1}\right)+(n-3) m\left(f_{2}\right)=(n-2)\left(m^{2} n+\right.\right.$ $m)+(n-3)\left(\frac{m^{2}}{2}\left(2 m n+1+\frac{n(n-3) m^{2}}{2}\right)\right.$. Thus $\overline{C_{n}}\left[\overline{K_{m}}\right]$ has $P_{n-2}\left[\overline{K_{m}}\right]$-magic decomposition.

Acknowledgement

This research was supported by Research Grant "Program Hibah Penelitian Kerjasama Antar Perguruan Tinggi (Pekerti) Unipdu-UI 2017 ", Ministry of Research, Technology and Higher Education No: 025/E3/2017.

Another H-super magic decompositions ...

References

[1] D. Fronček, P. Kovář, T. Kovářová, Constructing Distance Magic Graphs From Regular Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing. 78 (2011), 349-354
[2] M. Bača, M. Miller, Super edge-antimagic graphs, Brown Walker Press, Boca Raton, Florida USA (2008).
[3] H. Enomoto, A. Lladó, T. Nakamigawa, G. Ringel, Super edge magic graphs, SUT Journal of Mathematics. 34 (1998), 105-109.
[4] J. A Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics. $\sharp \mathrm{DS} 6,2016$.
[5] Gutiérrez, A. Lladó, A Magic Coverings, Journal of Combinatorial Mathematics and Combinatorial Computing. 55 (2005) 43-56
[6] Hendy, The H - super (anti) magic Decomposition of Antiprism graphs, AIP Conference Proceedings 1707. 020007(2016);DOI: 10.1063/1.4940808.
[7] Hendy, An H-super magic Decompositions of The Lexicographic Product of Graphs, preprint.
[8] Inayah, A. Lladó, J. Moragas, Magic and Antimagic H-decompositions, Discrete Math. 312 (2012) 1367-1371.
[9] A. Kotzig, A. Rosa, Magic valuation of finite graphs, Canadian Mathematics Bulletin. 13, (1970) 451-461.
[10] Z. Liang, Cycle-supermagic decompositions of Complete multipartite Graphs, Discrete Mathematics. 312, (2012) 3342-3348.
[11] T.K. Maryati, A.N.M. Salman, On graph-(super)magic labelings of a path-amalgamation of isomorphic graphs, Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications. (2010) 228-233.
[12] K.A. Sugeng, Magic and Antimagic labeling of graphs, University of Ballarat,(2005).
[13] W.D. Wallis, Magic Graphs, Birkhäuser Boston, Basel, Berlin (2001).

[^0]: Received: 17 Oct 2017, Revised: 15 May 2018, Accepted: 08 Jun 2018.

