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Abstract

We propose sum rules for permutations pn(k) of the ensemble {1, 2, · · · , n} with k fixed points, in
the form of partial sums of their moments. The corresponding identities involve Stirling numbers
of the first kind s(q, r). Using a formula due to Vassilev-Missana and the Schlömlich expression
of Stirling numbers, we also deduce sum rules for binomial coefficients. Connections with Bell
numbers Bn are outlined.
Keywords: partitions, fixed points, Bell numbers, signed and unsigned Stirling numbers of the first kind, Stirling numbers of the
second kind, binomial sums
Mathematics Subject Classification : 05A05, 05A10, 05A15, 05A19

1. Introduction

Let us denote by pn(k) the number of permutations of the ensemble {1, 2, · · · , n} which have
exactly k fixed points. A permutation has exactly one fixed point if and only if it is a derangement
of (n−1) elements (fixing one element from {1, 2 · · · , n}). There are n choices for which element
is fixed and dn−1 derangements of the remaining elements. Hence there are n dn−1 such permuta-
tions, where dk represents the number of derangements of k elements. Performing a permutation
with k fixed points boils down to choosing k fixed points among the n initial ones, and then a
derangement (permutation without fixed point) for the (n− k) remaining ones. Thus

pn(k) =

(
n

k

)
dn−k, (1)
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with dk = pk(0). One has, following Ref. [19]:

pn(0) =
n∑

k=1

(k − 1)

(
n

k

)
pn−k(0).

Such a relation is obtained from the Euler recurrence relation for derangements

pn(0) = (n− 1) [pn−1(0) + pn−2(0)]

and, as pointed out by the authors of Ref. [19], has first been proved by Deutsch and Elizalde [8],
who gave a bijective proof and a proof involving generating functions. One has also, using Eq. (1):

pn−k(0) =
n−k∑
l=1

(l − 1)

(
n− k

l

)
pn−k−l(0). (2)

Thus, using Eq. (1), one finds

pn(k) =

(
n

k

)
pn−k(0),

yielding

pn−k−l(0) =
pn−k(l)(
n− k

l

)
which gives, according to Eq. (2):

pn(k)(
n

k

) =
n−k∑
l=1

(l − 1)

(
n− k

l

)
pn−k(l)(
n− k

l

) ,

and thus

pn(k) =

(
n

k

) n−k∑
l=1

(l − 1) pn−k(l).

Only a limited number of identities are known for permutations that contain fixed points. Most
of these identities are expressed in terms of Stirling numbers of the second kind or Bell numbers.
The Stirling numbers of the second kind, denoted by

{
q
k

}
, count the number of distinct ways to

decompose a set of n elements into k non-empty subsets [17]. The Bell number Bq is the number
of partitions of a set of cardinality q [2]. It is also the number of n−pattern sequences [6], and is
related to Stirling numbers of the second kind through

Bq =

q∑
k=0

{ q
k

}
.

Actually for every natural number n ≥ q one can write [21]:

Bq =
n∑

k=0

{ q
k

}
. (3)
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Inserting the usual expression of Stirling number of the second kind

{ q
k

}
=

1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jq

into Eq. (3) yields

Bq =
n∑

k=0

1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jq

=
n∑

k=0

k∑
j=0

(−1)k−j jq

j!(k − j)!

=
n∑

j=0

jq

j!

n∑
k=j

(−1)k−j

(k − j)!

=
n∑

j=0

jq

j!

n−j∑
s=0

(−1)s

s!

and since

pn(j) =
n!

j!

n−j∑
s=0

(−1)s

s!
,

one finds

Bq =
1

n!

n∑
j=0

jq pn(j). (4)

The foregoing formula is intimately tied to the fact that the limit law for the number of fixed points
is a Poisson law [10]. Also it is quite easy to see a bijective interpretation of it, since it amounts to
count permutations of size n with a marked ordered q−tuple of fixed points (allowing a fixed point
being repeated). For example, for q = 2 one sees well the two cases, upon counting the number
of possibilities by choosing first the values of the fixed points, and then the remaining permutation
(when the two marked fixed points are different the associated partition of 2 is {1}, {2}, when they
are equal the associated partition of 2 is {1, 2}).

It turns out that Eq. (4) can be interpreted as a variation of Dobiński’s formula [9]:

Bq =
1

e

q∑
k=0

kq

k!
.

Note that since the number of derangements of k elements reads

pk(0) = dk = k!
k∑

i=0

(−1)i

i!
, (5)
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equation (3) can be recast into

Bq =
n∑

k=1

kqdn−k

k!(n− k)!
.

It is worth mentioning that using known upper bounds for Bell numbers, it it possible to directly
derive bounds for finite sums of permutations with fixed points, or directly for pn(k), by inverting
the relation (4) (see Appendix A).

In section 2, we derive a family of sum rules (or identities) involving Stirling numbers of the
first kind [4]. Resulting sum rules for binomial coefficients are obtained in section 3.

2. Sum rules involving Stirling numbers of the first kind

2.1. The generating-function technique
Let us consider

fn(t) =
n∑

k=0

tk pn(k)

and calculate the generating function of fn(t)/n!:

G(x) =
∞∑
n=0

1

n!

(
n∑

k=0

tkpn(k)

)
xn.

Thanks to Eq. (1), one gets

G(x) =
∞∑
n=0

1

n!

(
n∑

k=0

tk
(
n

k

)
pn−k(0)

)
xn

=
∞∑

k,r=0

pk(0)
xk

k!

(xt)r

r!

= ext
∞∑
k=0

pk(0)

k!
xk. (6)

Using the number of derangements of k elements given by Eq. (5), Eq. (6) becomes

G(x) = ext
∞∑
k=0

(
k∑

i=0

(−1)i

i!

)
xk

= ext
∞∑
i=0

(−1)i

i!

∞∑
k=i

xk = ext
∞∑
i=0

(−1)i

i!

xi

1− x

and thus finally

G(x) =
ex(t−1)

1− x
,

which is nothing else than the generating function of the derangements e−x/(1− x), multiplied by
ext.
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2.2. Extracting the coefficients
Theorem 2.1. For n a non-zero natural number, and m a natural number, one has

n∑
k=0

r+1∑
i=0

s(r + 1, i) ki pn(k) = n!, (7)

where pn(k) is the permutation of {1, 2 · · · , n} with k fixed points and s(q, r) represents the
(signed) Stirling number of the first kind.

Proof. Expanding G(x) and identifying the coefficients of xn, one finds
n∑

k=0

tkpn(k) = n!
n∑

i=0

(t− 1)i

i!
.

Evaluating the (r − 1)th derivative at t = 0, with 1 ≤ r < n− 1 yields
n∑

k=0

k(k − 1)(k − 2) · · · (k − r)pn(k) = n!.

The descending product involved in the latter expression can be expressed in terms of monomials
using

(x)n = x(x− 1)(x− 2) · · · (x− q + 1) =

q∑
k=0

s(q, k)xk,

where s(q, k) is a signed Stirling number of the first kind. The sign of s(q, k) is the same as the
sign of (−1)q−k and one has in particular

q∑
k=0

(−1)ks(q, k) = (−1)qq!

and ∀k > q, s(q, k) = 0. The Stirling numbers of the first kind s(q, k) satisfy, for 1 ≤ k ≤ q, the
recurrence relation

s(q + 1, k) = s(q, k − 1)− q s(q, k),

with s(0, 0) = 1 and ∀q ≥ 1: s(q, 0) = s(0, q) = 0. Connections of Stirling numbers with
combinatorics are briefly sketched in Appendix B. In the present case, we get

x(x− 1)(x− 2) · · · (x− r) =
r+1∑
k=0

s(r + 1, k)xk

yielding
n∑

k=0

r+1∑
i=0

s(r + 1, i) ki pn(k) = n!,

which completes the proof.
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The case q = 1 was the subject of an olympiad problem [14]. It can be easily obtained from
Eq. (1) by induction. For n = 1, one has

1∑
k=0

k pn(k) = p1(1) =

(
1

1

)
d0 = 1 = 1!,

and
2∑

k=0

k pn(k) = p2(1) + 2p2(2) =

(
2

1

)
d1 + 2

(
2

2

)
d0 = 2 = 2!,

since d0 = 1 and d1 = 0. Let us assume that
n−1∑
k=0

k pn−1(k) = (n− 1)!.

At the next step, one has
n∑

k=0

k pn(k) =
n∑

k=0

k

(
n

k

)
pn−k(0)

= n
n∑

k=0

(
n− 1

k − 1

)
pn−1−(k−1)(0)

= n× (n− 1)! = n!.

The next values are
n∑

k=0

k2pn(k) = 2n!,
n∑

k=0

k3pn(k) = 5n!,

and
n∑

k=0

k4pn(k) = 15n!,
n∑

k=0

k5pn(k) = 52n!.

3. Binomial sum rules

By employing identity (7) alongside a formula by Vassilev-Missana and the Schlömilch ex-
pression for Stirling numbers, this section establishes several sum rules for binomial coefficients.

In 2005, Vassilev-Missana obtained the following identity [13, 20] (see Appendix C):

ki =

⌊ (k−1)i
k

⌋∑
l=0

(−1)l
(
i

l

)(
k(i− l)

i

)
, (8)

where ⌊x⌋ represents the integer part of x. Equation (8), combined with Eq. (7) yields

n∑
k=0

r+1∑
i=0

⌊ (k−1)i
k

⌋∑
l=0

s(r + 1, i)(−1)l
(
i

l

)(
k(i− l)

i

)
pn(k) = n!. (9)
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Inserting the Schlömlich expression [18, 5]:

s(r + 1, i) =
∑

0≤j≤h≤r+1−i

(−1)j+h

(
h

j

)(
r + h

r + 1− i+ h

)(
2r + 2− i

r + 1− i− h

)
(h− j)r+1−i+h

h!

into Eq. (9), yields

n∑
k=0

r+1∑
i=0

⌊ (k−1)i
k

⌋∑
l=0

∑
0≤j≤h≤r+1−i

(−1)j+h

(
h

j

)(
r + h

r + 1− i+ h

)(
2r + 2− i

r + 1− i− h

)
(h− j)r+1−i+h

h!

× (−1)l
(
i

l

)(
k(i− l)

i

)
pn(k) = n!.

We can in turn use Eq. (8) to replace (h−j)r+1−i+h by the binomial sum (8) in the latter expression:

(h− j)r+1−i+h =

⌊ (h−j−1)(r+1+h−i)
h−j

⌋∑
t=0

(−1)t
(
r + 1 + h− i

t

)(
(h− j)(r + 1 + h− i− t)

r + 1− i+ h

)
yielding

n∑
k=0

r+1∑
i=0

⌊ (k−1)i
k

⌋∑
l=0

∑
0≤j≤h≤r+1−i

⌊ (h−j−1)(r+1+h−i)
h−j

⌋∑
t=0

(−1)t+j+h+l

(
r + 1 + h− i

t

)
(
(h− j)(r + 1 + h− i− t)

r + 1− i+ h

)(
h

j

)(
r + h

r + 1− i+ h

)(
2r + 2− i

r + 1− i− h

)
×
(
i

l

)(
k(i− l)

i

)
pn(k) = n!,

and in a second step, since

pn(k) =
n!

k!

n−k∑
m=0

(−1)m

m!
, (10)

one gets

n∑
k=0

n−k∑
m=0

r+1∑
i=0

⌊ (k−1)i
k

⌋∑
l=0

∑
0≤j≤h≤r+1−i

⌊ (h−j−1)(r+1+h−i)
h−j

⌋∑
t=0

(−1)t+j+h+l

(
r + 1 + h− i

t

)
(
(h− j)(r + 1 + h− i− t)

r + 1− i+ k

)(
h

j

)(
r + h

r + 1− i+ h

)(
2r + 2− i

r + 1− i− h

)
×
(
i

l

)(
k(i− l)

i

)
1

k!

(−1)m

m!
= 1.
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Note that using the following representation of Bell numbers:

Bq =

q∑
k=1

k∑
i=1

(−1)k−i iq

k!

combined with Eq. (8) again, one gets

Bq =

q∑
k=1

k∑
i=1

⌊ (i−1)q
i

⌋∑
l=0

(−1)l+k−i

k!

(
q

l

)(
i(q − l)

q

)
which, for n ≥ q, is equal to (see Eq. (4)):

1

n!

n∑
k=0

kq pn(k).

Replacing kq and pn(k) by their expressions given in Eqs. (8) and (10) respectively, leads to

Bq =
n∑

k=0

⌊ (k−1)q
k

⌋∑
l=0

n−k∑
i=0

(−1)l+i

k!i!

(
q

l

)(
k(q − l)

q

)
.

Similar identities can be obtained, for instance using the Worpitzky identity [22, 5]:

ki =
i∑

j=0

〈
i

j

〉(
k + j

j

)
,

where
〈
i
j

〉
is the Eulerian number, i.e., the number of permutations of {1, 2, · · · , n} having k

permutation ascents [11].

4. Conclusion

We proposed sum rules for permutations with k fixed points, involving Stirling numbers of the
first kind. The corresponding identities are partial sums of the moments of these partitions. As an
additional benefit, combining a representation of ki with an expression of Stirling numbers due to
Schlömlich, a method to derive binomial sums was explained. Several unusual expressions of Bell
numbers were also given. In the future, we plan to investigate the specific case of involutions of
{1, 2, · · · , n} with k fixed points.

Appendix A. Bounds and asymptotic forms

Adell [1] obtained the following upper bound

|s(n+ 1,m+ 1)| ≤ n!(log n)m

m!

(
1 +

m

log n

)
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and thus, we get

n! ≤
n∑

k=0

r+1∑
i=0

|s(r + 1, i)| ki pn(k) ≤
n∑

k=0

λr,k pn(k)

with

λr,k =
r+1∑
i=0

r!(log r)i−1

(i− 1)!

(
1 +

(i− 1)

log r

)
ki

which turns out to be equal to

λr,k = k2(k log r)r
[
−1 + (1 + k)rk log r E−r(k log r)

]
,

where

En(z) =

∫ ∞

1

e−zt

tn
dt

is an exponential integral. We have also [7, 15, 12]:

Bn ≍ 1√
n

(
n

W (n)

)n+1/2

exp

(
n

W (n)
− n− 1

)
as well as [16]:

Bn ≍ n!√
2πW 2(n) eW (n)

ee
W (n)−1

W n(n)

where W is the usual Lambert function. This yields ∀n > 0 [3]:

Bn <

(
0.792n

log(n+ 1)

)n

.

Appendix B. Properties of Stirling numbers of the first kind

The coefficients arising in the polynomial expansion of

x(x+ 1) · · · (x+ (n− 1)).

are precisely the unsigned Stirling numbers of the first kind One readily sees that these quantities
are intimately connected to sums of powers of integers:

x(x+ 1) · · · (x+ (n− 1)) =xn + xn−1

(
n∑

k=1

(k − 1)

)
+ xn−2

(
n∑

i<j=1

(i− 1)(j − 1)

)
+ · · ·

+ x

(
n∏

k=1

(k − 1)

)
,

and it is convenient to write

x(x+ 1) · · · (x+ (n− 1)) = (x+ 1 + · · ·+ 1︸ ︷︷ ︸
n−1 times

) · · · (x+ 1 + 1)(x+ 1)x.
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Expanding this product via the distributive law yields exactly n! terms. Indeed, in the first factor
(x+1+ · · ·+1) there are n possible choices, in the second factor there are n− 1, and this pattern
continues until the final factor x, from which there is only a single choice. More generally, at the
kth factor there are n− k + 1 available terms, and precisely one of these contributes an additional
power of x to the resulting monomial.

We now describe a parallel construction for generating a permutation σ. Begin by selecting
σ(1) from the n possible values. Next, choose σ(σ(1)), then σ(σ(σ(1))), and continue in this
manner until a cycle is completed. Once this cycle is closed, select σ(s), where s is the smallest
element not yet assigned, and repeat the procedure. At the kth step of this construction, there are
again n− k + 1 possible choices, exactly one of which results in the formation of a new cycle.

These two procedures are therefore equivalent. Consequently, the number of permutations of
n elements with exactly k cycles is given by the coefficient of the monomial xk in the expansion
of (x+ 1 + · · ·+ 1)(x+ 1)x.

Appendix C. Proof of the binomial expression of ki

[
(1 + x)k − xk

]i
=

i∑
l=0

(−1)l
(
i

l

)
xkl(1 + x)k(i−l)

=
i∑

l=0

(−1)l
(
i

l

)
xkl

k(i−l)∑
j=0

(
k(i− l)

j

)
xj

=
i∑

l=0

(−1)l
(
i

l

) k(i−l)∑
j=0

(
k(i− l)

j

)
xj+kl.

The coefficient of x(k−1)i is obtained for j + kl = (k − 1)i with j ≥ 0, i.e., (k − 1)i − kl ≥ 0 or
l ≤ ⌊(k − 1)i/k⌋. It therefore follows that it is equal to

⌊(k−1)i/k⌋∑
l=0

(−1)l
(
i

l

)(
k(i− l)

i

)
.

One has also [
(1 + x)k − xk

]i
=

[
1 +

(
k

1

)
x+

(
k

2

)
x2 + · · ·+

(
k

k − 1

)
xk−1

]i
in which the coefficient of x(k−1)i is (

k

k − 1

)i

= ki, (C.1)

and thus

ki =

⌊(k−1)i/k⌋∑
l=0

(−1)l
(
i

l

)(
k(i− l)

i

)
.
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