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Abstract

Let G = (V(G), E(G)) be a non-complete graph and let ¢ : V(G) — {0, 1,2} be a function on
G. Foreach i € {0,1,2},let V; = {w € V(G) : ¢(w) = i}. A function ¢ = (V, V3, V3) is an
interior Roman dominating function (InRDF) on G if (i) for every v € Vj, there exists u € V;
such that uv € E(G), and (i7) either Vi = V(G) or for every z € V5, z is an interior vertex of
G. Denoted by wi(¢) = 3,y d(u) is the weight of InRDF ¢; and the minimum weight of
an InRDF ¢ on G, denoted by ~,r(G), is called the interior Roman domination number. Any
InRDF ¢ on graph G with wZ"(¢) = v7,r(G) is called a 7, z-function on G. In this paper, we
introduce a new parameter of a Roman dominating function in graphs and discuss some important
combinatorial properties.
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1. Introduction

Domination in graphs is one of the interesting topics in graph theory. Apparently, there are
various domination parameters that have already been published in the literature, and it has a useful
application in networking and protection strategies [9]. Nowadays, the theory of domination has
been a center of motivation for many mathematicians to make research contributions to the field
that involve theoretical properties [1], [2], [3], [4]. In the year 2004, Cockayne et al. [8] pioneered
the foundation of Roman dominating function in graphs. Roman domination is directly inspired
by the defense strategy in the fourth century A.D. carried out by the Roman Emperor Constantine
the Great [8]. Since then, Roman domination has been a center of discrete mathematical research,
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and there are now several papers on different parameters that are published in the literature [7],
[10] [12]. In 2016, the interior dominating set in graphs was initiated by Kinsley and Selvaraj [11].
The content of their paper introduced a new parameter of domination in graphs called interior
domination and determined the bounds and their exact values in some classes of graphs. Inspired
by the concepts of interior domination and Roman domination, the researcher combined the two
concepts and initiated a new parameter called interior Roman domination in graphs.

As for the terminologies used in this study, the readers may refer to [5], [6], [9]. Let G =
(V(G), E(G)) be any graph where V' (G) is the set of vertices and £(G) is the set of edges. The
order of G denoted by |V (G)| is defined as the cardinality of V' (G), and the size of G denoted by
|E(G)| is defined as the cardinality of E(G). Let v € V(G). The open neighborhood of v in G is
defined as the set Ng(v) = {u € V(G) : uwv € E(G)} and the closed neighborhood of u € V(G)
is defined as the set N¢[u] = Ng(u)U{u}. Let O C V(G). The set Ng(O) = N(O) = U Ne(u)

ueO

is called the open neighborhood of O and the set N[O] = N[O] = N(O) U O is called the closed
neighborhood of O in G. Let x and y be two distinct vertices in G. The distance between x and
y is the length of the shortest path between x and y, and is denoted by d(x,y). Now, if there is
no such path from x to y, then we can define the distance between them as d¢(z,y) = oo. Let
z € V(G). Ifdg(x,y) = da(z, 2) + da(z, y), then z is said to lie between x and y. In that case, z
is called interior vertex of G.

For concepts and definitions of some classes of graphs that are not presented here, the readers
may look into the following references: [2], [S], [6], [9]. A subset D of V(G) is a dominating set
of G if foreachv € V(G)\ D, there exists u € D such that uv € F(G), thatis, N[D] = V(G) [9].
The domination number of G is defined as the minimum cardinality of a dominating set D C V(G)
and is denoted by v(G). Moreover, D is called y-set in G if |[D| = 7(G). Let I C V(G) for
which every element in / is an interior vertex in G. Then I is called interior dominating set of
graph G provided that for every v € V(G) \ I there exists u € I such that uv € E(G), that is,
V(G) = Ng[I] [11]. The interior domination number of G is defined as the smallest cardinality
of I in G and is denoted by 77, (G). In addition, a set I is called yr,,-set in G if || = v, (G).

Let ¢ : V(G) — {0,1,2} be a function on graph G and for each j € {0,1,2}, let V; =
{w € V(G) : ¢(w) = j}. Then we can write ¢ as ¢ = (Vp, V1, V). In that case, a function
¢ : V(G) — {0,1,2} is a Roman dominating function (RDF) on G if for each v € V| there
exists u € V; such that uv € E(G) [8]. The weight of an RDF ¢ denoted by wZ(¢) is defined
by w(¢) = > vevic) @(@) = [Vi] + 2|Va|. The Roman domination number of G is defined as
the minimum weight of an RDF on G, that is, 7z(G) = min{wZ(f) : ¢ is an RDF on G} and
is denoted by yg(G). On the face of it, every RDF ¢ on G with wZ(¢) = vxr(G) is called a
~vg-function on G. Motivated by the concept of interior and Roman dominations, the following
definition is realized.

Let GG be a graph. Then a function ¢ = (4, V1, V5) is an interior Roman dominating function
(InRDF) on G if and only if the following hold:

1. for every v € Vj, there exists u € V5 such that wv € F(G); and
2. either V; = V(G), or for every z € V4, z is an interior vertex of G.
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The weight of InRDF ¢ is denoted by w{'*(¢) is the sum wi(¢) = 3=, () ¢(u); and the
minimum weight of an InRDF on G, denoted by v1,,r(G), is called interior Roman domination
number. Consequently, an InRDF ¢ with weight ;,zr(G) is regarded as a 7, g-function on G.

In this paper, a new variant of Roman domination in graphs was introduced, called interior
Roman domination. The theoretical properties of an interior Roman dominating function in any
graph were explored. Furthermore, characterizations were constructed, lower and upper bounds of
the interior Roman domination number were given, and a realization problem was discussed.

2. Results

This section explores some properties of the interior Roman dominating function on any simple
and undirected graph.

Proposition 2.1. Let G be a non-complete graph. If ¢ = (Vy, Vi, Va) is an InRDF on G for which
Vi = @, then Vy # O is an interior dominating set on G.

Proof. Suppose that ¢ = (Vp, V1, V3) is an InRDF on G. Then for every v € Vj, there exists u € V5
such that v and v are adjacent in G, and either V; = V(G) or for every w € V5, w is an interior
vertex in GG. Hence, if V; = @, then it follows that V5 is a dominating set, that is, V(G) = Ng[V3].
Therefore, it suffices to conclude that V5 # @ is an interior dominating set on G. This completes
the proof. [

In the case of Proposition 2.1, the set V5 can be empty for some non-complete graph. For
instance, let G = K,. Since there exists no interior vertex in G, it follows that Ymr(G) =
V| + 2|Va| = [Vi| +2(0) = |Vi| = |V(G)| = n. Moreover, in general, Proposition 2.1 implies
that the set V5 is an interior dominating set on the graph (V' (G) \ V}). By definition of InRDF on
any graph, the following remark is immediate.

Remark 2.1. Let G be a graph. If ¢ = (1, V4, V,) is an InRDF on G for which |Vy| = V3| > 0,
then v;,r(G) = n.

Proposition 2.2. Let G be any graph of order n and let ¢ = (Vy, V1, Va) be ~yp,r-function on G.
Then 71,2(G) < n if and only if [Va| < |Vi).

Proof. Let ¢ = (Vp, V1, V) be a v, g-function on any graph G with |V (G)| = n.
Assume that v7,,z(G) < n. By Remark 2.1, we get |Vp| # |Va|. Suppose that if [V3| > [V], then
we have

Ymr(G) = |Vi| + 2[Va|
> |Vi| + [Va| + Vol
= [V(G)]

=n.
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A contradiction to our assupmtion that v;,z(G) < n. Therefore, we obtain |V5| < |V).
Conversely, we assume that |V5| < |Vj|. Then it follows that

Tmr(G) = [Vi] 4 2[V7]
< [Vi[ + V2| + Vo]
= [V(G)]

=n.
This completes the proof. [

Proposition 2.3. Let G be a graph and let ¢ = (Vy, V1, V3) be an InRDF on G with Vy = @. Then
Vo is a ypp-set on G if and only if ¢ = (Vy, V1, Va) is vnr-function on G.

Proof. Suppose that ¢ = (V4, V4, V2) InRDF on any graph G for which V; = @ and V5 is a 7;,,-set
on G. Seeking for contradiction. Assume for a moment that ¢ = (4, V4, V3) is not a vy, g-function
on G. Then there exists v, g-function 8 = (Uy, Uy, Us) on G such that U; = & and we have

Viur(G) = Wi (B) = |Ui| + 2|Us|
= 2|Uy|
< 2|4
= [Vi| + 2|Va| = w(9).

Thus, we obtain |Us| < |V5| and, since Us is an interior dominating set by Proposition 2.1, this is
a contradiction to our assumption that V5 is a yp,-set on G. Therefore, it suffices to conclude that
¢ = (Vo, Vi, Vo) is a v, g-function on G. Conversely, suppose ¢ = (Vp, Vi, V) is a 7, g-function
on G. Seeking for contradiction. Assume for a moment that V5 is not a y,,-set on G. Then there
exists yy,-set V3 on G such that for every x € V), x is an interior vertex on G. Let W, = V(G)\ V5,
W, = @, and Wy = V. Then is easy to check that f' = (W, Wy, W5) is an InRDF on G. Observe
that WP () = Wi + 2[Ws| = 2|V3| < 2|V5| = [Vi| + 2|Va| = wi(¢) = 7imr(G). Thus, we
get IR (") < 41rr(G). A contradiction to our assumption. Therefore, it suffices to say that V5
is a y,-set on G. This completes the proof. [

The following results are values of interior Roman domination number for some special graphs.
Proposition 2.4. Let n be a positive integer. Then vr,r(K,) = n.

Proof. Let ¢ = (Vy, V1, V3) be a v, g-function on K,,. Suppose that n = 1,2. Then it is easy to
check that yr,,r(K,) = |Vi| = |V (K,)| = n. Now, suppose that n > 3. Since for arbitrary distinct
vertices u, v, w € V(K,), dk, (u, w) # dk, (u,v) + dg, (v, w), it follows that there is no interior
vertex in G. Consequently, V2 = @ and so, V, = &. Thus, we get y1,r(G) = |Vi| + 2|Vs| =
[Vi| 4+ 2(0) = |V(G)| = n. This completes the proof. O

Proposition 2.5. For an integer n > 3, we have
2 ifn =0 (mod 3)
Vinr(Pn) = Ymr(Cr) = ¢ 252, ifn =1 (mod 3)
L2 ifn =2 (mod 3)
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Proof. Let P, = [v1, v, ...,v,] and C,, = [uq, ug, ..., Uy, uy] where n > 3. In addition, let ¢p, =
(VP v Vi) be a 4, p-function on P, and ¢, = (V™, V", V™) be a 1, g-function on C,,.
Then consider the following cases:

Case 1. n = 0 (mod 3)
Set Vi = {vy,v5, 05, ..., Up_1 } and VI = {uz,u5,u8, .., Un_1}. Then, we obtain V' * = V(P,)\
Vi, Vil = vi(C,) \ VI, VP = @ and V" = @. In that case, V(P,) = Np,[V,"] and
V(C,) = Ng, [VS"]. Moreover, it is clear that V™ and V,“» are minimum interior dominating sets
on P, and Cn,respectlvely Thus, by Proposition 2.3, it follows that 77, z(P,) = |Vi™|+2|Vy | =
0+2(2) = 2 and v,z (Cr) = V7| +2|Va | =0+ 2(%) = 2.

Case 2. n =1 (mod 3)

For P,, we set V™ = {vy,v5, Vg, ..., Un_o y and V' = {v,,}, and for C,,, we set V" = {uy, us, us, ...

and V;°" = {u,}. Then, we get V" = V(P,)\ (V,""UVy™") and V" = V(C,)\ (V" UV ™). So,
it implies that V (P,) = Np, [V//" UVJ™] and V(C},) = Ng, [VE U V7). Now, it is easy to check
that V, * and Vzc" are minimum interior dominating sets on P, and C,,, respectively. Consequently,
if we invoke Proposition 2.3, then it implies that vy, z(P,) = |V +2[Vy | = 1+2(25) = 22
and 1,r(Cp) = [V + 2|V | = 1+ 2(7%51) = 25

3
Case 3. n = 2 (mod 3)

Set V™ = {vy,v5, Vg, ..., Up_1 } and V' = {uy, us, us, ..., u,_, }. This means that Vi = V(P,)\
Vi Vi = V(C,) \ V™, VP = @, and V" = @. In that case, we obtain V (P,) = Np, [V,/"]
and V(C,,) = Ng, [V, "]. Clearly, it follows that 1, ™ and V, ™ are minimum interior dominating
sets on P, and C,,, respectively. Thus, in view of Proposition 2.3, we end up with v7,,z(P,) =
VI 4+ 21V = 04 2(™52) = 252 and y1np(Cy) = [V + 2V | = 0+ 2(2) = 252,

This completes the proof. 0

Proposition 2.6. Let G be a graph. Then v1,r(G) = 1 if and only if G = K;.

Proof. Let ¢ = (Vp, V1, V3) be a 7, g-function on G. Suppose that 7;,r(G) = 1. Then it follows
that |V1| + 2|V,| = 1 and hence, |V}| = 1 and |V3| = 0. Moreover, it implies that 1, = &. Thus,
we have |V (G)| = |Vo| + |Vi| + V2| =0+ 140 = 1 and so, G = K. The converse is clear. This
completes the proof. 0

Theorem 2.1. Let G; (i = 1, ..., k) be components of graph G. Then ¢ is an InRDF on G if and
only if ¢|¢, is an InRDF on G, for all i € {1,2,...k}. In particular,

k

Ynr(G) =D nr(Gy).

i=1

Proof. Suppose that Gy, ..., G, are the components of graph G with |V (G)| = n and let ¢ =
(Vo, Vi, V2) be an RDF on GG. Assume that ¢ is an InRDF on G. For each i € {1,2,..., k}, we set
Vi=VonV(G)), Vi = VinV(G,;) and Vi = Vo N V(G;). So we obtain ¢|g, = (Vb,Vf,V’)
for each i € {1,2,....,k}. Letv € V{ for some i € {1,2,...,k}. Since ¢ is an InRDF on G, it
follows that there exists u € V5 such that wv € E(G) and w is an interior vertex of G. Since
for any x € V(G},) and for any y € V(Gy) (k # 1), dg(x,y) = oo, it implies that u € V; and
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da, (u,v) = 1 where u is an interior vertex in G, showing that ¢|¢, is an InRDF on G;. Therefore,
it suffices to say that ¢|¢, is an InRDF on G, for all i € {1,2, ..., k}. Thus, if ¢ is a v, g-function
on G, then

Yinr(G) = V1| + 2| V4|
k k
=2 Vil +23 [vi]
=1 =1
k . .
= > (Vil+2v3l)
=1

k
> Z Yinr(Gi).
i=1

k
Assume that ¢|g, = (Ug, Ui, Us) is an InRDF on G, for all i € {1,2,..k}. Let Vy = UUé,
=1

k k

Vv, = UU{ and V, = UU; Then ¢ = (Vi, V4, Va) is an RDF on G. Now, let v' € V;. Then
i=1 i=1

we have v/ € V] for some i € {1,2,...k}. Since ¢|g, is an InRDF on G, it implies that there

exists u' € VJ such that v'v' € E(G;) where v/ is an interior vertex on G;. Since Vy C V, it

follows that u’ € V5, showing that ¢ is an InRDF G. Thus, if ¢|¢, is a vy, g-function on G; for all

i€ {1,2,..k}, then

k

Z’YInR(Gi) = Z (‘Vf‘ + 2“/;’)

i=1

k k
=Y Vil +2) V3]
=1 =1

= Vil +2|V3|
> Yar(G).
In particular, we obtain
k
Yinr(G) = Yimr(Gi).
i=1
This completes the proof. ]

The next theorem is a realization problem.

Theorem 2.2. Let a,b, and n be positive integers for which 2 < a < b < n. Then there exists a
graph G of order n such that yr(G) = a and vr,g(G) = b.
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Proof. Let G be any graph and let A = (Uy, Uy, Us) be a yg-function on G and let ¢ = (V;, Vi, V5)
be a y;,g-function on G. Then consider the following cases:

Casel.2<a<b=mn

If G = K, then it is clear that Yg(G) = vr(G) = 2. Now, let G = K,, where n > 3.
Then let v € V(G) and set Uy = V(G) \ {u}, Uy = @ and Uy = {u}. This implies that
Yr(G) = wE(N) = |Uy| + 2|Us| = 0+ 2(1) = 2. On the other hand, by Proposition 2.4, we obtain
Yinr(G) = wi (@) = |Vi| = |[V(G)| = n. Since n > 3, it follows that 2 = yr(G) < V1.r(G) =
n. Thus, the conclusion holds.

Case2.2<a<b<n

Let G = ( Uk, Kﬁn) U Py where k > 1, m > 3 and K, is a complete graph of order m for each
i €{1,2,...,k}. It follows that |V (G)| = n = km + 3 where k > 1and m > 3. Letu; € V(K)
forall i € {1,2,...,k}. Then, we have V (U}, K!) = N[U/_{u;}]. Also, we letv € V(P;)
for which V(P3) = Np,[v]. In that case, we set Uy = V(G) \ (( UL, {w;}) U {v}), U = &,
and U = (UL, {u;}) U {v}. So, we have 7(G) = wi(A) = [Ui| +2|Us| = 0+ 2(k + 1) =
2k + 2. Note that if v € V(Ps) and V(P;) = Np,[v], then degs(v) = 2 and so, it is clear
that v is an interior vertex in P3. Thus, we have v;,z(P3) = 2. In view of Proposition 2.4, we

have 7, ( ur, K;) = V1| =

V( ur, K;n)‘ = km . Invoking Theorem 2.1, it implies that

Yinr(G) = WnR( ur, K;n) + Yimr(P3) = km + 2. Since k£ > 1 and m > 3, it follows that
2<2k+2<km+2<n=km+ 3. So, the conclusion follows.

Case3.2<a=b<n

Consider G = P, where 6 < n = 0 (mod 3). By Proposition 2.5, it follows that 2 < yr(G) =
2

% = Ymr(G) < n and the conclusion follows.

Combining the three cases, completes the proof. [
As a consequence of Theorem 2.2, the following corollary is obtained.

Corollary 2.1. Let G be a graph of order n. Then the difference vy1,r(G) — Yr(G) can be made
arbitrarily large.

Proof. Let m and n be positive integers such that m 4+ 2 < n. In view of Theorem 2.2, there
exists a graph G with |V(G)| = n such that v,,z(G) = m + 2 and yg(G) = 2. Then we
obtain vr,,z(G) — vr(G) = m. As we increase m sufficiently large as possible, it follows that
Yimr(G) — vr(G) can be made arbitrarily large. This completes the proof. O

Theorem 2.3. Let ¢ = (Viy, Vi, Va) be a vyr,g-function on a non-complete and connected graph G
of order n for which |Vi| = 0. Then v1,r(G) = vrn(G) + 1 if and only if there is a vertexv € V(G)
such that dege(v) = n — v, (G).

Proof. Let G be a non-complete and connected graph of order n and let ¢ = (Vp, V4, V3) be a
~mr-function on G for which |V;| = 0.

Suppose that v7,r(G) = v1,(G) + 1. Then it follows that v.,(G) + 1 = |Vi| 4+ 2|V4|. Since
Vi = @, by Proposition 2.1, it follows that V5 is an interior dominating set on GG. And since ¢ be
a yrnr-function on G for which |V;| = 0, by Proposition 2.3, it implies that V5 is a 7y,-set on G.
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Thus, we have |V,|+1 = 2|V;| and so, | V5| = 1. Let Vo, = {v}. Since V4 is a y,-set on G, we have
V(G) = Ng[v]. Note that G is non-complete and connected graph with |V (G)| = n. Therefore,
we end up with degg(v) = Ng(v) = [V(G)| — {v} =n — |Va| = n — y1.(G).

Suppose that there exists a vertex v € V(G) such that degs(v) = n — 7v7,(G). Since ¢ be a
~imr-function on G for which |V;| = 0, it implies that V5 is a y7,,-set on G, that is, |Va| = v7,(G).
So, we get deg(v) = Ne(v) = [V(G)| = [Va| = [Vol + [V + [Va| — [Va| = [Vo|. Thus, it
follows that V(G) = Ng[v]. Since G is a non-complete and connected graph, then there exists
x,y € V(G) distinct from v such that dg(z,y) = dg(x,v) + dg(v,y). This implies that v is an
interior vertex of G. Let V5 = {v}. Then |V5| = 1. Therefore, we obtain y7,z(G) = Wik (¢) =
Vil +2[Va| = V3| + [Va| = 1 (G) + 1. 0

The following result portrays the lower and upper bounds of interior Roman domination num-
ber of any graph G.

Theorem 2.4. Let G be a graph with |V (G)| = n and ¢ = (Vy, V1, Va) be a vrnp-function on G
for which V|, = &. Then,

maz{vr(G), 7 (G)} < Yrar(G) < min{2y1,(G), n}.

Proof. Assume that ¢ = (V, Vi, V3) is a yp,g-function on any graph G of order n such that
Vi = . Invoking Proposition 2.1, it implies that V5 is an interior dominating set on . So, we
have 77,(G) < [Va| < Vi + 2Va| = w@™(¢) = Ymr(G). Thus, 7(G) < ymr(G). Since
every interior Roman dominating function is a Roman dominating function on G, it follows that
Yr(G) < vrr(G). Therefore, the lower bound of v5,zr(G) is equal to max{y,(G),vr(G)}.
Meanwhile, if we set 1, = &, then we get Vo = &. In that case, ¢ = (,V) = V(G), Q) is
an interior Roman dominating function on G. This implies that y,z(G) < wi®(¢) = |Vi] +
2|Vo| = V1] = |V(G)| = n. Let V; be a yp,-set on G. Suppose that ¢ = (Vp, V4, V3) is a
~vrnr-function on G such that V; = &. Since V5 is an interior dominating set on (7, it follows that
Yinr(G) < WR(¢) = V1| + 2|Va| = 2|Va| = 297, (G). Thus, the upper bound of v7,z(G) is
equal to min{n, 2v7,r(G)}. This completes the proof. O

The bounds in Theorem 2.4 are sharp. To see this, let G = K, for all n > 1. Then it follows
that v7,,(G) = vmr(G) = |[Vi] = n. Let G = K; + P, forall n > 3. Since v € V(K}) is an
interior vertex in G, it follows that vz(G) = v7,r(G) = 2. Finally, let G = P, = [v1, v2, U3, V4]
and let ¢ = (Vp, V4, V2) be vp,g-function on G. In that case, we set V; = @ and Vo = {vq,v3}
where vo and vs are interior vertices in P;. This follows that v;,(G) = |V3|. Hence, we obtain
Yrar(G) = Wi (9) = Vil 4 2|Va| = 2|Va| = 291,(G).

Let G and H be any graphs. The join of graphs GG and H is the graph G + H with vertex set
V(G+H)=V(G)UV(H)andedge set E(G+ H) = E(G)UE(H)U{uv:u € V(G)andv €
V(H)} and is denoted as G + H.

Theorem 2.5. Let G be a non-complete connected graph and H be a non-complete graph. Then
Yimr(G) = 2 if and only if G = K| + H where |V (H)| > 2.

85



On interior Roman domination in graphs | Leomarich F. Casinillo

Proof. Let ¢ = (Vp, V1, V5) be a 7y, gr-function on a non-complete connected graph G. Then it
follows that for any v € V5, v is an interior vertex in G and if V} = &, by Proposition 2.1, V5 is an
interior dominating set on G.

Assume that y7,,g(G) = 2. Then it follows that |V;| + 2|V3| = 2 and so, |Vi| = 2 or |V5] = 1.
Suppose that |V;| = 2. Then, it implies that V, = @ and so, |Vy| = 0. Hence, 7/,r(G) =
Wi (¢) = V1| = |[V(G)| = 2 and thus, G € {K5, K,}. This contradicts to our assumption that
G is a non-complete connected graph. Suppose that |V5| = 1. Then, we get V; = @. Now, let
Vo = {u} where u is an interior vertex in G. Since V5 is an interior dominating set on G, it follows
that there exists two distinct vertices z,y € V(G) \ Vz such that dg(z, y) = dg(x,u) + de(u, y)
and V(G) = Ng[Vs]. Hence, it suffices to conclude that G = K; + H, where u € V(K7) and
x,y € H. Therefore, H is a non-complete graph with |V (H)| > 2.

Assume that G = K+ H where H is a non-complete graph with |V (H)| > 2. Letu € V (K3).
Since H is a non-complete graph with |V (H)| > 2, it implies that there exists two distinct vertices,
say, « and y, such that dg(x,y) = 2. So, it follows that dg(z,y) = dg(z,u) + de(u,y) and thus,
w is an interior vertex in G. Moreover, we get V' (G) = N¢[u| and hence, {u} is minimum interior
dominating set on G. In that case, we set Vo = {u}, V; = @, and Vj = V(G) \ Vo = V(H).
Therefore, we end up with v7,z(G) = |Vi| 4+ 2|Va| =0+ 2(1) = 2.

This completes the proof. ]

The following corollary is immediate from Theorem 2.5.

Corollary 2.2. Let n be a positive integer. Then the following holds:

i.) Vinr(Sn) = 2 where n > 2;

ii.) Yinr(Wy) = 2 where n > 4;
iii.) Yrnr(Fy) = 2 where n > 3; and
iv.) Vinr(Kmn) = 4 where m,n > 2;

The next theorem is a characterization of interior Roman dominating function in the join of
two graphs.

Theorem 2.6. Let G and H be non-complete connected graphs. Then ¢ = (Vy, V1, V3) is a InRDF
on G + H if and only if one of the following is satisfied:

i.) there exist x1,xo € Va such that z1 € V(G) and x5 € V(H) are interior vertices; or
ii.) ViUV, =VEUVE; or
iii.) ViuVy=VHEUVH: or
iv) ViuVy = (VEU V) u (VT uvyh).
where ¢|q = (VE, VE VE) and ¢|lg = (VI , VE, V) are InRDF on G and H, respectively, such
that for each i € {0,1,2}, V€ =V,NV(G) and VH =V, NV (H).

Proof. Let ¢ = (Vp, Vi, V,) be an RDF on G + H where G and H are non-complete connected
graphs. Assume that ¢ is an INnRDF on G+ H. Since GG and H are non-complete connected graphs,
it follows that there exist interior vertices x; and x5 such that z; € V(G) and xo € V(H). Let
x1, 29 € Vo. Since V(G) C Ngipglra] and V(H) C Ny glxi], itimplies that V(G) = Ngyu[Va).

86



On interior Roman domination in graphs | Leomarich F. Casinillo

Hence, (i.) holds. On the other hand, set I = (ViU V2)NV(G) and Iy = (V1 U VL) NV (H). Then
letv € V(G)\Ig C V. Since ¢ is an InRDF on G + H, it follows that there exists u € V5 such that
wv € E(G+ H) and u is an interior vertex in G+ H. Suppose thatif u € I C V(G), then it means
that I \ V} is an interior dominating set on the subgraph (V' (G) \ V1). Now, let V& = V(G) \ I,
VE =I5\ Vo and V. = I5 \ V4. Thus, we obtain V.¢ = V; N V(G) for each i € {0,1,2} and
50, dle = (V& V¢ V) is an InRDF on G. Also, let V{f = V(H) \ Iy, Vi = Iy \ V, and
Vil = Iy \ Vi. Then by similar argument, it implies that V;/ = V; N V(H) for any i € {0, 1,2}
and so, ¢ = (VH, V2 V) is an INRDF on H. Now, since V(G + H) = Ng,z[VF U V], it
follows that V; U Vy = V€ U V.,F and so, (i4.) holds. Also, since V(G + H) = Ng, [V UV, it
also follows that V; U V5 = VlH U VZH and thus, (722.) holds. Accordingly, we also have V;, U V, =
(VEUVE) U (Vi U VHE) and (iv.) is also satisfied. Conversely, assume that (i.) holds, that is,
there exists x1, 2o € V5 such that 1 € V(G) and x5 € V(H) are interior vertices. Note that
V(G) Q Ng+H[.CE2] and V(H) Q NG_|_H[.CE1]. Hence, V(G + H) = NG+H[{.T1,372H = NG+H[‘/2]
Consequently, ¢ = (Vp, V4, V3) is an InRDF on G + H. Now, assume that (ii.) or (¢iz.) or (iv.)
hold. Since ¢|¢ = (V&, V,E,VF) and ¢|g = (Vi , ViH, V') are INRDF on G and H, respectively,
it clearly implies that ¢ = (4, V3, V5) is an InRDF on G + H.

This completes the proof. 0

The corollaries below are immediate consequence from Theorem 2.6.
Corollary 2.3. Let G and H be non-complete connected graphs. Then 2 < vr,,gr(G + H) < 4.

Corollary 2.4. Let G and H be non-complete connected graphs. Then

Ymr(G + H) = min{4, Y1nr(G), yir(H)}.

The following remark is quick from Proposition 2.4 and Theorem 2.6.

Remark 2.2. Let G and H be complete graphs with |V (G)| = nand |V (H)| = m. Then v;,r(G +
H)=n+m.

Let G and H be any graphs. The corona of G and H is defined to be the graph obtained by
taking one copy of G and |V (G)| copies of H and then forming the joins (v) + H” = v + H" for
each v € V(G), where H" is a copy of H corresponding to vertex v and is denoted by G o H.
The following theorem is a characterization of interior Roman dominating function in the corona
of two nontrivial connected graphs.

Theorem 2.7. Let G and H be a nontrivial connected graphs and let ¢ = (Viy, V1, V3) be an RDF
on G o H. Then ¢ is a yng-function on G o H if and only if Vo = V(G) and V; = &.

Proof. Let ¢ = (Vp, V1, V5) be an RDF on G o H where GG and H are nontrivial connected graphs.
Suppose that ¢ is a vy, gz-function on G + H. Seeking for contradiction. Assume for a moment
that V, # V(G) or V; # @. Consider V5 # V(G). Then it implies that Vo C V(G) or V(G) C Va.
On one hand, we suppose that V5 C V(G). Then there exists v € V(G) such that V(H") ¢
Neon|[Va] and so, V(G o H) # Ngom[Va]. A contradiction. On the other hand, we suppose that
V(G) € Va. Then it follows that there exists a vertex u € V5 \ V(G) such that u € V(H") for
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some v € V(G). Now, if H is a complete graph, then by the proof of Proposition 2.4, u is not an
interior vertex in G o H, a contradiction. Moreover, since V(G o H) = Ngou [V (G)], we can set
Wo=V(GoH)\V(G), W, = @ and W, = V(G). In that case, f = (W, Wy, W) is an InRDF
on G o H. Observe that

wisi (f) = [Wh| + 2| W
= 2|V(G)|
< 2|2
= [Vi] + 2| V3]
= vmr(Go H).

A contradiction. Thus, we conclude that V, = V(G). And since V(G o H) = Ng[V3] and ¢ is
~vimr-function on GG o H, it suffices to conclude that V} = &.

Suppose that V2 = V(G) and V} = @. Letv € V, = V(G). Then it follows that there exists
x € V(H") and y € V(G) such that dgon(z,y) = dgon(z,v) + dgom(v,y). And so V3 is an
interior vertex set in G o H. Seeking for contradiction. Assume for a moment that ¢ = (15, V1, V5)
is an InRDF but not a 7y, g-function on G o H. Then there exists ¢ = (U, Uy, Us) such that g
is a vp,g-function on G o H for which U; = @. It implies that v;,z(G o H) = |Uy| 4 2|Us| =
21Us| < 2|Vo| = V4| + 2|Va| = wlif(¢). Thus, it means that |Us| < |V3]. Since Vo = V(G)
and V| = @, it follows that there exists V (H") for some v € V(G) such that V(H") € Neon|Us)]
and so, V(G o H) # Ngou|Us]. This is a contradiction. Therefore, it suffices to say that ¢ is a
~Yrnr-function on G o H. This completes the proof. [

The following corollary is immediate from Theorem 2.7.

Corollary 2.5. Let G be a nontrivial connected graph with |V (G)| = n and H be any nontrivial
connected graph. Then v1,r(G o H) = 2n.

Conclusion

This study introduced a new variation of Roman domination in graphs called the interior Roman
dominating function, and some important properties were presented. Additionally, it is depicted
that for any graph G of order n, the lower bound of 7;,r(G) is maz{ygr(G),v»(G)} and the
upper bound is min{2v;,(G),n}. The study also portrayed that for positive integers a,b and n
with 1 < a < b < n, there exists a graph G such that g(G) = a, Y1,r(G) = b and |V(G)| = n.
Moreover, this paper has shown that for any non-complete graph H, v;,,z(G) = 2 if and only if
G = K, + H where |V (H)| > 2. Furthermore, characterizations of the interior Roman dominating
function in the join and corona of two graphs were discussed. Investigation on the characterization
of interior Roman domination under the binary operations, such as Cartesian and lexicographic
products, is highly recommended for future studies.
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