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Abstract

Let G = (V (G), E(G)) be a non-complete graph and let ϕ : V (G) → {0, 1, 2} be a function on
G. For each i ∈ {0, 1, 2}, let Vi = {w ∈ V (G) : ϕ(w) = i}. A function ϕ = (V0, V1, V2) is an
interior Roman dominating function (InRDF) on G if (i) for every v ∈ V0, there exists u ∈ V2

such that uv ∈ E(G), and (ii) either V1 = V (G) or for every z ∈ V2, z is an interior vertex of
G. Denoted by ωInR

G (ϕ) =
∑

u∈V (G) ϕ(u) is the weight of InRDF ϕ; and the minimum weight of
an InRDF ϕ on G, denoted by γInR(G), is called the interior Roman domination number. Any
InRDF ϕ on graph G with ωInR

G (ϕ) = γInR(G) is called a γInR-function on G. In this paper, we
introduce a new parameter of a Roman dominating function in graphs and discuss some important
combinatorial properties.
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1. Introduction

Domination in graphs is one of the interesting topics in graph theory. Apparently, there are
various domination parameters that have already been published in the literature, and it has a useful
application in networking and protection strategies [9]. Nowadays, the theory of domination has
been a center of motivation for many mathematicians to make research contributions to the field
that involve theoretical properties [1], [2], [3], [4]. In the year 2004, Cockayne et al. [8] pioneered
the foundation of Roman dominating function in graphs. Roman domination is directly inspired
by the defense strategy in the fourth century A.D. carried out by the Roman Emperor Constantine
the Great [8]. Since then, Roman domination has been a center of discrete mathematical research,
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and there are now several papers on different parameters that are published in the literature [7],
[10] [12]. In 2016, the interior dominating set in graphs was initiated by Kinsley and Selvaraj [11].
The content of their paper introduced a new parameter of domination in graphs called interior
domination and determined the bounds and their exact values in some classes of graphs. Inspired
by the concepts of interior domination and Roman domination, the researcher combined the two
concepts and initiated a new parameter called interior Roman domination in graphs.

As for the terminologies used in this study, the readers may refer to [5], [6], [9]. Let G =
(V (G), E(G)) be any graph where V (G) is the set of vertices and E(G) is the set of edges. The
order of G denoted by |V (G)| is defined as the cardinality of V (G), and the size of G denoted by
|E(G)| is defined as the cardinality of E(G). Let v ∈ V (G). The open neighborhood of v in G is
defined as the set NG(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of u ∈ V (G)

is defined as the set NG[u] = NG(u)∪{u}. Let O ⊆ V (G). The set NG(O) = N(O) =
⋃
u∈O

NG(u)

is called the open neighborhood of O and the set NG[O] = N [O] = N(O)∪O is called the closed
neighborhood of O in G. Let x and y be two distinct vertices in G. The distance between x and
y is the length of the shortest path between x and y, and is denoted by dG(x, y). Now, if there is
no such path from x to y, then we can define the distance between them as dG(x, y) = ∞. Let
z ∈ V (G). If dG(x, y) = dG(x, z) + dG(z, y), then z is said to lie between x and y. In that case, z
is called interior vertex of G.

For concepts and definitions of some classes of graphs that are not presented here, the readers
may look into the following references: [2], [5], [6], [9]. A subset D of V (G) is a dominating set
of G if for each v ∈ V (G)\D, there exists u ∈ D such that uv ∈ E(G), that is, N [D] = V (G) [9].
The domination number of G is defined as the minimum cardinality of a dominating set D ⊆ V (G)
and is denoted by γ(G). Moreover, D is called γ-set in G if |D| = γ(G). Let I ⊆ V (G) for
which every element in I is an interior vertex in G. Then I is called interior dominating set of
graph G provided that for every v ∈ V (G) \ I there exists u ∈ I such that uv ∈ E(G), that is,
V (G) = NG[I] [11]. The interior domination number of G is defined as the smallest cardinality
of I in G and is denoted by γIn(G). In addition, a set I is called γIn-set in G if |I| = γIn(G).

Let ϕ : V (G) → {0, 1, 2} be a function on graph G and for each j ∈ {0, 1, 2}, let Vj =
{w ∈ V (G) : ϕ(w) = j}. Then we can write ϕ as ϕ = (V0, V1, V2). In that case, a function
ϕ : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on G if for each v ∈ V0 there
exists u ∈ V2 such that uv ∈ E(G) [8]. The weight of an RDF ϕ denoted by ωR

G(ϕ) is defined
by ωR

G(ϕ) =
∑

x∈V (G) ϕ(x) = |V1| + 2|V2|. The Roman domination number of G is defined as
the minimum weight of an RDF on G, that is, γR(G) = min{ωR

G(f) : ϕ is an RDF on G} and
is denoted by γR(G). On the face of it, every RDF ϕ on G with ωR

G(ϕ) = γR(G) is called a
γR-function on G. Motivated by the concept of interior and Roman dominations, the following
definition is realized.

Let G be a graph. Then a function ϕ = (V0, V1, V2) is an interior Roman dominating function
(InRDF) on G if and only if the following hold:

1. for every v ∈ V0, there exists u ∈ V2 such that uv ∈ E(G); and
2. either V1 = V (G), or for every z ∈ V2, z is an interior vertex of G.
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The weight of InRDF ϕ is denoted by ωInR
G (ϕ) is the sum ωInR

G (ϕ) =
∑

u∈V (G) ϕ(u); and the
minimum weight of an InRDF on G, denoted by γInR(G), is called interior Roman domination
number. Consequently, an InRDF ϕ with weight γInR(G) is regarded as a γInR-function on G.

In this paper, a new variant of Roman domination in graphs was introduced, called interior
Roman domination. The theoretical properties of an interior Roman dominating function in any
graph were explored. Furthermore, characterizations were constructed, lower and upper bounds of
the interior Roman domination number were given, and a realization problem was discussed.

2. Results

This section explores some properties of the interior Roman dominating function on any simple
and undirected graph.

Proposition 2.1. Let G be a non-complete graph. If ϕ = (V0, V1, V2) is an InRDF on G for which
V1 = ∅, then V2 ̸= ∅ is an interior dominating set on G.

Proof. Suppose that ϕ = (V0, V1, V2) is an InRDF on G. Then for every v ∈ V0, there exists u ∈ V2

such that u and v are adjacent in G, and either V1 = V (G) or for every w ∈ V2, w is an interior
vertex in G. Hence, if V1 = ∅, then it follows that V2 is a dominating set, that is, V (G) = NG[V2].
Therefore, it suffices to conclude that V2 ̸= ∅ is an interior dominating set on G. This completes
the proof.

In the case of Proposition 2.1, the set V2 can be empty for some non-complete graph. For
instance, let G = Kn. Since there exists no interior vertex in G, it follows that γInR(G) =
|V1| + 2|V2| = |V1| + 2(0) = |V1| = |V (G)| = n. Moreover, in general, Proposition 2.1 implies
that the set V2 is an interior dominating set on the graph ⟨V (G) \ V1⟩. By definition of InRDF on
any graph, the following remark is immediate.

Remark 2.1. Let G be a graph. If ϕ = (V0, V1, V2) is an InRDF on G for which |V0| = |V2| ≥ 0,
then γInR(G) = n.

Proposition 2.2. Let G be any graph of order n and let ϕ = (V0, V1, V2) be γInR-function on G.
Then γInR(G) < n if and only if |V2| < |V0|.

Proof. Let ϕ = (V0, V1, V2) be a γInR-function on any graph G with |V (G)| = n.
Assume that γInR(G) < n. By Remark 2.1, we get |V0| ̸= |V2|. Suppose that if |V2| > |V0|, then
we have

γInR(G) = |V1|+ 2|V2|
> |V1|+ |V2|+ |V0|
= |V (G)|
= n.
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A contradiction to our assupmtion that γInR(G) < n. Therefore, we obtain |V2| < |V0|.
Conversely, we assume that |V2| < |V0|. Then it follows that

γInR(G) = |V1|+ 2|V2|
< |V1|+ |V2|+ |V0|
= |V (G)|
= n.

This completes the proof.

Proposition 2.3. Let G be a graph and let ϕ = (V0, V1, V2) be an InRDF on G with V1 = ∅. Then
V2 is a γIn-set on G if and only if ϕ = (V0, V1, V2) is γInR-function on G.

Proof. Suppose that ϕ = (V0, V1, V2) InRDF on any graph G for which V1 = ∅ and V2 is a γIn-set
on G. Seeking for contradiction. Assume for a moment that ϕ = (V0, V1, V2) is not a γInR-function
on G. Then there exists γInR-function β = (U0, U1, U2) on G such that U1 = ∅ and we have

γInR(G) = ωInR
G (β) = |U1|+ 2|U2|

= 2|U2|
< 2|V2|
= |V1|+ 2|V2| = ωInR

G (ϕ).

Thus, we obtain |U2| < |V2| and, since U2 is an interior dominating set by Proposition 2.1, this is
a contradiction to our assumption that V2 is a γIn-set on G. Therefore, it suffices to conclude that
ϕ = (V0, V1, V2) is a γInR-function on G. Conversely, suppose ϕ = (V0, V1, V2) is a γInR-function
on G. Seeking for contradiction. Assume for a moment that V2 is not a γIn-set on G. Then there
exists γIn-set V ′

2 on G such that for every x ∈ V ′
2 , x is an interior vertex on G. Let W0 = V (G)\V ′

2 ,
W1 = ∅, and W2 = V ′

2 . Then is easy to check that f ′ = (W0,W1,W2) is an InRDF on G. Observe
that ωInR

G (f ′) = |W1| + 2|W2| = 2|V ′
2 | < 2|V2| = |V1| + 2|V2| = ωInR

G (ϕ) = γInR(G). Thus, we
get ωInR

G (f ′) < γInR(G). A contradiction to our assumption. Therefore, it suffices to say that V2

is a γIn-set on G. This completes the proof.

The following results are values of interior Roman domination number for some special graphs.

Proposition 2.4. Let n be a positive integer. Then γInR(Kn) = n.

Proof. Let ϕ = (V0, V1, V2) be a γInR-function on Kn. Suppose that n = 1, 2. Then it is easy to
check that γInR(Kn) = |V1| = |V (Kn)| = n. Now, suppose that n ≥ 3. Since for arbitrary distinct
vertices u, v, w ∈ V (Kn), dKn(u,w) ̸= dKn(u, v) + dKn(v, w), it follows that there is no interior
vertex in G. Consequently, V2 = ∅ and so, V0 = ∅. Thus, we get γInR(G) = |V1| + 2|V2| =
|V1|+ 2(0) = |V (G)| = n. This completes the proof.

Proposition 2.5. For an integer n ≥ 3, we have

γInR(Pn) = γInR(Cn) =


2n
3
, if n ≡ 0 (mod 3)

2n+1
3

, if n ≡ 1 (mod 3)
2n+2

3
, if n ≡ 2 (mod 3)
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Proof. Let Pn = [v1, v2, ..., vn] and Cn = [u1, u2, ..., un, u1] where n ≥ 3. In addition, let ϕPn =
(V Pn

0 , V Pn
1 , V Pn

2 ) be a γInR-function on Pn and ϕCn = (V Cn
0 , V Cn

1 , V Cn
2 ) be a γInR-function on Cn.

Then consider the following cases:

Case 1. n ≡ 0 (mod 3)
Set V Pn

2 = {v2, v5, v8, ..., vn−1} and V Cn
2 = {u2, u5, u8, ..., un−1}. Then, we obtain V Pn

0 = V (Pn)\
V Pn
2 , V Cn

0 = V (Cn) \ V Cn
2 , V Pn

1 = ∅ and V Cn
1 = ∅. In that case, V (Pn) = NPn [V

Pn
2 ] and

V (Cn) = NCn [V
Cn
2 ]. Moreover, it is clear that V Pn

2 and V Cn
2 are minimum interior dominating sets

on Pn and Cn, respectively. Thus, by Proposition 2.3, it follows that γInR(Pn) = |V Pn
1 |+2|V Pn

2 | =
0 + 2

(
n
3

)
= 2n

3
and γInR(Cn) = |V Cn

1 |+ 2|V Cn
2 | = 0 + 2

(
n
3

)
= 2n

3
.

Case 2. n ≡ 1 (mod 3)
For Pn, we set V Pn

2 = {v2, v5, v8, ..., vn−2} and V Pn
1 = {vn}, and for Cn, we set V Cn

2 = {u2, u5, u8, ..., un−2}
and V Cn

1 = {un}. Then, we get V Pn
0 = V (Pn)\

(
V Pn
1 ∪V Pn

2

)
and V Cn

0 = V (Cn)\
(
V Cn
1 ∪V Cn

2

)
. So,

it implies that V (Pn) = NPn [V
Pn
1 ∪ V Pn

2 ] and V (Cn) = NCn [V
Cn
1 ∪ V Cn

2 ]. Now, it is easy to check
that V Pn

2 and V Cn
2 are minimum interior dominating sets on Pn and Cn, respectively. Consequently,

if we invoke Proposition 2.3, then it implies that γInR(Pn) = |V Pn
1 |+2|V Pn

2 | = 1+2
(
n−1
3

)
= 2n+1

3

and γInR(Cn) = |V Cn
1 |+ 2|V Cn

2 | = 1 + 2
(
n−1
3

)
= 2n+1

3
.

Case 3. n ≡ 2 (mod 3)
Set V Pn

2 = {v2, v5, v8, ..., vn−1} and V Cn
2 = {u2, u5, u8, ..., un−1}. This means that V Pn

0 = V (Pn)\
V Pn
2 , V Cn

0 = V (Cn) \ V Cn
2 , V Pn

1 = ∅, and V Cn
1 = ∅. In that case, we obtain V (Pn) = NPn [V

Pn
2 ]

and V (Cn) = NCn [V
Cn
2 ]. Clearly, it follows that V Pn

2 and V Cn
2 are minimum interior dominating

sets on Pn and Cn, respectively. Thus, in view of Proposition 2.3, we end up with γInR(Pn) =
|V Pn

1 |+ 2|V Pn
2 | = 0 + 2

(
n+1
3

)
= 2n+2

3
and γInR(Cn) = |V Cn

1 |+ 2|V Cn
2 | = 0 + 2

(
n+1
3

)
= 2n+2

3
.

This completes the proof.

Proposition 2.6. Let G be a graph. Then γInR(G) = 1 if and only if G = K1.

Proof. Let ϕ = (V0, V1, V2) be a γInR-function on G. Suppose that γInR(G) = 1. Then it follows
that |V1| + 2|V2| = 1 and hence, |V1| = 1 and |V2| = 0. Moreover, it implies that V0 = ∅. Thus,
we have |V (G)| = |V0|+ |V1|+ |V2| = 0+ 1+ 0 = 1 and so, G = K1. The converse is clear. This
completes the proof.

Theorem 2.1. Let Gi (i = 1, ..., k) be components of graph G. Then ϕ is an InRDF on G if and
only if ϕ|Gi

is an InRDF on Gi for all i ∈ {1, 2, ...k}. In particular,

γInR(G) =
k∑

i=1

γInR(Gi).

Proof. Suppose that G1, ..., Gk are the components of graph G with |V (G)| = n and let ϕ =
(V0, V1, V2) be an RDF on G. Assume that ϕ is an InRDF on G. For each i ∈ {1, 2, ..., k}, we set
V i
0 = V0 ∩ V (Gi), V i

1 = V1 ∩ V (Gi) and V i
2 = V2 ∩ V (Gi). So we obtain ϕ|Gi

= (V i
0 , V

i
1 , V

i
2 )

for each i ∈ {1, 2, ..., k}. Let v ∈ V i
0 for some i ∈ {1, 2, ..., k}. Since ϕ is an InRDF on G, it

follows that there exists u ∈ V2 such that uv ∈ E(G) and u is an interior vertex of G. Since
for any x ∈ V (Gk) and for any y ∈ V (Gl) (k ̸= l), dG(x, y) = ∞, it implies that u ∈ V i

2 and
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dGj
(u, v) = 1 where u is an interior vertex in Gi, showing that ϕ|Gi

is an InRDF on Gi. Therefore,
it suffices to say that ϕ|Gi

is an InRDF on Gi for all i ∈ {1, 2, ..., k}. Thus, if ϕ is a γInR-function
on G, then

γInR(G) = |V1|+ 2|V2|

=
k∑

i=1

∣∣V i
1 |+ 2

k∑
i=1

∣∣V i
2 |

=
k∑

i=1

(∣∣V i
1 |+ 2

∣∣V i
2 |
)

≥
k∑

i=1

γInR(Gi).

Assume that ϕ|Gi
= (U i

0, U
i
1, U

i
2) is an InRDF on Gi for all i ∈ {1, 2, ...k}. Let V0 =

k⋃
i=1

U i
0,

V1 =
k⋃

i=1

U i
1 and V2 =

k⋃
i=1

U i
2. Then ϕ = (V0, V1, V2) is an RDF on G. Now, let v′ ∈ V0. Then

we have v′ ∈ V i
0 for some i ∈ {1, 2, ...k}. Since ϕ|Gi

is an InRDF on G, it implies that there
exists u′ ∈ V i

2 such that u′v′ ∈ E(Gi) where u′ is an interior vertex on Gi. Since V i
2 ⊆ V2, it

follows that u′ ∈ V2, showing that ϕ is an InRDF G. Thus, if ϕ|Gi
is a γInR-function on Gi for all

i ∈ {1, 2, ...k}, then

k∑
i=1

γInR(Gi) =
k∑

i=1

(∣∣V i
1 |+ 2

∣∣V i
2 |
)

=
k∑

i=1

∣∣V i
1 |+ 2

k∑
i=1

∣∣V i
2 |

= |V1|+ 2|V2|
≥ γInR(G).

In particular, we obtain

γInR(G) =
k∑

i=1

γInR(Gi).

This completes the proof.

The next theorem is a realization problem.

Theorem 2.2. Let a, b, and n be positive integers for which 2 ≤ a ≤ b ≤ n. Then there exists a
graph G of order n such that γR(G) = a and γInR(G) = b.

83



www.ijc.or.id

On interior Roman domination in graphs | Leomarich F. Casinillo

Proof. Let G be any graph and let λ = (U0, U1, U2) be a γR-function on G and let ϕ = (V0, V1, V2)
be a γInR-function on G. Then consider the following cases:
Case 1. 2 ≤ a ≤ b = n
If G = K2, then it is clear that γR(G) = γInR(G) = 2. Now, let G = Kn where n ≥ 3.
Then let u ∈ V (G) and set U0 = V (G) \ {u}, U1 = ∅ and U2 = {u}. This implies that
γR(G) = ωR

G(λ) = |U1|+ 2|U2| = 0+ 2(1) = 2. On the other hand, by Proposition 2.4, we obtain
γInR(G) = ωInR

G (ϕ) = |V1| = |V (G)| = n. Since n ≥ 3, it follows that 2 = γR(G) < γInR(G) =
n. Thus, the conclusion holds.
Case 2. 2 < a < b < n
Let G =

(
∪k

i=1 K
i
m

)
∪ P3 where k ≥ 1, m ≥ 3 and Ki

m is a complete graph of order m for each
i ∈ {1, 2, ..., k}. It follows that |V (G)| = n = km+ 3 where k ≥ 1 and m ≥ 3. Let ui ∈ V (Ki

m)
for all i ∈ {1, 2, ..., k}. Then, we have V

(
∪k

i=1 K
i
m

)
= N [∪k

i=1{ui}]. Also, we let v ∈ V (P3)

for which V (P3) = NP3 [v]. In that case, we set U0 = V (G) \
((

∪k
i=1 {ui}

)
∪ {v}

)
, U1 = ∅,

and U2 =
(
∪k

i=1 {ui}
)
∪ {v}. So, we have γR(G) = ωR

G(λ) = |U1| + 2|U2| = 0 + 2(k + 1) =
2k + 2. Note that if v ∈ V (P3) and V (P3) = NP3 [v], then degG(v) = 2 and so, it is clear
that v is an interior vertex in P3. Thus, we have γInR(P3) = 2. In view of Proposition 2.4, we

have γInR
(
∪k

i=1 K
i
m

)
= |V1| =

∣∣∣∣V (
∪k
i=1 K

i
m

)∣∣∣∣ = km . Invoking Theorem 2.1, it implies that

γInR(G) = γInR
(
∪k

i=1 K
i
m

)
+ γInR(P3) = km + 2. Since k ≥ 1 and m ≥ 3, it follows that

2 < 2k + 2 < km+ 2 < n = km+ 3. So, the conclusion follows.
Case 3. 2 < a = b < n
Consider G = Pn where 6 ≤ n ≡ 0 (mod 3). By Proposition 2.5, it follows that 2 < γR(G) =
2n
3
= γInR(G) < n and the conclusion follows.

Combining the three cases, completes the proof.

As a consequence of Theorem 2.2, the following corollary is obtained.

Corollary 2.1. Let G be a graph of order n. Then the difference γInR(G) − γR(G) can be made
arbitrarily large.

Proof. Let m and n be positive integers such that m + 2 < n. In view of Theorem 2.2, there
exists a graph G with |V (G)| = n such that γInR(G) = m + 2 and γR(G) = 2. Then we
obtain γInR(G) − γR(G) = m. As we increase m sufficiently large as possible, it follows that
γInR(G)− γR(G) can be made arbitrarily large. This completes the proof.

Theorem 2.3. Let ϕ = (V0, V1, V2) be a γInR-function on a non-complete and connected graph G
of order n for which |V1| = 0. Then γInR(G) = γIn(G)+1 if and only if there is a vertex v ∈ V (G)
such that degG(v) = n− γIn(G).

Proof. Let G be a non-complete and connected graph of order n and let ϕ = (V0, V1, V2) be a
γInR-function on G for which |V1| = 0.
Suppose that γInR(G) = γIn(G) + 1. Then it follows that γIn(G) + 1 = |V1| + 2|V2|. Since
V1 = ∅, by Proposition 2.1, it follows that V2 is an interior dominating set on G. And since ϕ be
a γInR-function on G for which |V1| = 0, by Proposition 2.3, it implies that V2 is a γIn-set on G.
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Thus, we have |V2|+1 = 2|V2| and so, |V2| = 1. Let V2 = {v}. Since V2 is a γIn-set on G, we have
V (G) = NG[v]. Note that G is non-complete and connected graph with |V (G)| = n. Therefore,
we end up with degG(v) = NG(v) = |V (G)| − |{v}| = n− |V2| = n− γIn(G).

Suppose that there exists a vertex v ∈ V (G) such that degG(v) = n − γIn(G). Since ϕ be a
γInR-function on G for which |V1| = 0, it implies that V2 is a γIn-set on G, that is, |V2| = γIn(G).
So, we get degG(v) = NG(v) = |V (G)| − |V2| = |V0| + |V1| + |V2| − |V2| = |V0|. Thus, it
follows that V (G) = NG[v]. Since G is a non-complete and connected graph, then there exists
x, y ∈ V (G) distinct from v such that dG(x, y) = dG(x, v) + dG(v, y). This implies that v is an
interior vertex of G. Let V2 = {v}. Then |V2| = 1. Therefore, we obtain γInR(G) = ωInR

G (ϕ) =
|V1|+ 2|V2| = |V2|+ |V2| = γIn(G) + 1.

The following result portrays the lower and upper bounds of interior Roman domination num-
ber of any graph G.

Theorem 2.4. Let G be a graph with |V (G)| = n and ϕ = (V0, V1, V2) be a γInR-function on G
for which V1 = ∅. Then,

max{γR(G), γIn(G)} ≤ γInR(G) ≤ min{2γIn(G), n}.

Proof. Assume that ϕ = (V0, V1, V2) is a γInR-function on any graph G of order n such that
V1 = ∅. Invoking Proposition 2.1, it implies that V2 is an interior dominating set on G. So, we
have γIn(G) ≤ |V2| ≤ |V1| + 2|V2| = ωInR

G (ϕ) = γInR(G). Thus, γIn(G) ≤ γInR(G). Since
every interior Roman dominating function is a Roman dominating function on G, it follows that
γR(G) ≤ γInR(G). Therefore, the lower bound of γInR(G) is equal to max{γIn(G), γR(G)}.
Meanwhile, if we set V0 = ∅, then we get V2 = ∅. In that case, ϕ = (∅, V1 = V (G),∅) is
an interior Roman dominating function on G. This implies that γInR(G) ≤ ωInR

G (ϕ) = |V1| +
2|V2| = |V1| = |V (G)| = n. Let V2 be a γIn-set on G. Suppose that ϕ = (V0, V1, V2) is a
γInR-function on G such that V1 = ∅. Since V2 is an interior dominating set on G, it follows that
γInR(G) ≤ ωInR

G (ϕ) = |V1| + 2|V2| = 2|V2| = 2γIn(G). Thus, the upper bound of γInR(G) is
equal to min{n, 2γInR(G)}. This completes the proof.

The bounds in Theorem 2.4 are sharp. To see this, let G = Kn for all n ≥ 1. Then it follows
that γIn(G) = γInR(G) = |V1| = n. Let G = K1 + Pn for all n ≥ 3. Since v ∈ V (K1) is an
interior vertex in G, it follows that γR(G) = γInR(G) = 2. Finally, let G = P4 = [v1, v2, v3, v4]
and let ϕ = (V0, V1, V2) be γInR-function on G. In that case, we set V1 = ∅ and V2 = {v2, v3}
where v2 and v3 are interior vertices in P4. This follows that γIn(G) = |V2|. Hence, we obtain
γInR(G) = ωInR

G (ϕ) = |V1|+ 2|V2| = 2|V2| = 2γIn(G).
Let G and H be any graphs. The join of graphs G and H is the graph G + H with vertex set

V (G+H) = V (G)∪ V (H) and edge set E(G+H) = E(G)∪E(H)∪ {uv : u ∈ V (G) and v ∈
V (H)} and is denoted as G+H .

Theorem 2.5. Let G be a non-complete connected graph and H be a non-complete graph. Then
γInR(G) = 2 if and only if G = K1 +H where |V (H)| ≥ 2.
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Proof. Let ϕ = (V0, V1, V2) be a γInR-function on a non-complete connected graph G. Then it
follows that for any v ∈ V2, v is an interior vertex in G and if V1 = ∅, by Proposition 2.1, V2 is an
interior dominating set on G.

Assume that γInR(G) = 2. Then it follows that |V1| + 2|V2| = 2 and so, |V1| = 2 or |V2| = 1.
Suppose that |V1| = 2. Then, it implies that V2 = ∅ and so, |V0| = 0. Hence, γInR(G) =
ωInR
G (ϕ) = |V1| = |V (G)| = 2 and thus, G ∈ {K2, K2}. This contradicts to our assumption that

G is a non-complete connected graph. Suppose that |V2| = 1. Then, we get V1 = ∅. Now, let
V2 = {u} where u is an interior vertex in G. Since V2 is an interior dominating set on G, it follows
that there exists two distinct vertices x, y ∈ V (G) \ V2 such that dG(x, y) = dG(x, u) + dG(u, y)
and V (G) = NG[V2]. Hence, it suffices to conclude that G = K1 + H , where u ∈ V (K1) and
x, y ∈ H . Therefore, H is a non-complete graph with |V (H)| ≥ 2.

Assume that G = K1+H where H is a non-complete graph with |V (H)| ≥ 2. Let u ∈ V (K1).
Since H is a non-complete graph with |V (H)| ≥ 2, it implies that there exists two distinct vertices,
say, x and y, such that dG(x, y) = 2. So, it follows that dG(x, y) = dG(x, u) + dG(u, y) and thus,
u is an interior vertex in G. Moreover, we get V (G) = NG[u] and hence, {u} is minimum interior
dominating set on G. In that case, we set V2 = {u}, V1 = ∅, and V0 = V (G) \ V2 = V (H).
Therefore, we end up with γInR(G) = |V1|+ 2|V2| = 0 + 2(1) = 2.
This completes the proof.

The following corollary is immediate from Theorem 2.5.

Corollary 2.2. Let n be a positive integer. Then the following holds:

i.) γInR(Sn) = 2 where n ≥ 2;
ii.) γInR(Wn) = 2 where n ≥ 4;

iii.) γInR(Fn) = 2 where n ≥ 3; and
iv.) γInR(Km,n) = 4 where m,n ≥ 2;

The next theorem is a characterization of interior Roman dominating function in the join of
two graphs.

Theorem 2.6. Let G and H be non-complete connected graphs. Then ϕ = (V0, V1, V2) is a InRDF
on G+H if and only if one of the following is satisfied:

i.) there exist x1, x2 ∈ V2 such that x1 ∈ V (G) and x2 ∈ V (H) are interior vertices; or
ii.) V1 ∪ V2 = V G

1 ∪ V G
2 ; or

iii.) V1 ∪ V2 = V H
1 ∪ V H

2 ; or
iv.) V1 ∪ V2 = (V G

1 ∪ V G
2 ) ∪ (V H

1 ∪ V H
2 ).

where ϕ|G = (V G
0 , V G

1 , V G
2 ) and ϕ|H = (V H

0 , V H
1 , V H

2 ) are InRDF on G and H , respectively, such
that for each i ∈ {0, 1, 2}, V G

i = Vi ∩ V (G) and V H
i = Vi ∩ V (H).

Proof. Let ϕ = (V0, V1, V2) be an RDF on G + H where G and H are non-complete connected
graphs. Assume that ϕ is an InRDF on G+H . Since G and H are non-complete connected graphs,
it follows that there exist interior vertices x1 and x2 such that x1 ∈ V (G) and x2 ∈ V (H). Let
x1, x2 ∈ V2. Since V (G) ⊆ NG+H [x2] and V (H) ⊆ NG+H [x1], it implies that V (G) = NG+H [V2].
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Hence, (i.) holds. On the other hand, set IG = (V1∪V2)∩V (G) and IH = (V1∪V2)∩V (H). Then
let v ∈ V (G)\IG ⊆ V0. Since ϕ is an InRDF on G+H , it follows that there exists u ∈ V2 such that
uv ∈ E(G+H) and u is an interior vertex in G+H . Suppose that if u ∈ IG ⊆ V (G), then it means
that IG \ V1 is an interior dominating set on the subgraph ⟨V (G) \ V1⟩. Now, let V G

0 = V (G) \ IG,
V G
1 = IG \ V2 and V G

2 = IG \ V1. Thus, we obtain V G
i = Vi ∩ V (G) for each i ∈ {0, 1, 2} and

so, ϕ|G = (V G
0 , V G

1 , V G
2 ) is an InRDF on G. Also, let V H

0 = V (H) \ IH , V H
1 = IH \ V2 and

V H
2 = IH \ V1. Then by similar argument, it implies that V H

i = Vi ∩ V (H) for any i ∈ {0, 1, 2}
and so, ϕ|H = (V H

0 , V H
1 , V H

2 ) is an InRDF on H . Now, since V (G +H) = NG+H [V
G
1 ∪ V G

2 ], it
follows that V1 ∪V2 = V G

1 ∪V G
2 and so, (ii.) holds. Also, since V (G+H) = NG+H [V

H
1 ∪V H

2 ], it
also follows that V1 ∪ V2 = V H

1 ∪ V H
2 and thus, (iii.) holds. Accordingly, we also have V1 ∪ V2 =

(V G
1 ∪ V G

2 ) ∪ (V H
1 ∪ V H

2 ) and (iv.) is also satisfied. Conversely, assume that (i.) holds, that is,
there exists x1, x2 ∈ V2 such that x1 ∈ V (G) and x2 ∈ V (H) are interior vertices. Note that
V (G) ⊆ NG+H [x2] and V (H) ⊆ NG+H [x1]. Hence, V (G +H) = NG+H [{x1, x2}] = NG+H [V2].
Consequently, ϕ = (V0, V1, V2) is an InRDF on G + H . Now, assume that (ii.) or (iii.) or (iv.)
hold. Since ϕ|G = (V G

0 , V G
1 , V G

2 ) and ϕ|H = (V H
0 , V H

1 , V H
2 ) are InRDF on G and H , respectively,

it clearly implies that ϕ = (V0, V1, V2) is an InRDF on G+H .
This completes the proof.

The corollaries below are immediate consequence from Theorem 2.6.

Corollary 2.3. Let G and H be non-complete connected graphs. Then 2 ≤ γInR(G+H) ≤ 4.

Corollary 2.4. Let G and H be non-complete connected graphs. Then

γInR(G+H) = min{4, γInR(G), γInR(H)}.

The following remark is quick from Proposition 2.4 and Theorem 2.6.

Remark 2.2. Let G and H be complete graphs with |V (G)| = n and |V (H)| = m. Then γInR(G+
H) = n+m.

Let G and H be any graphs. The corona of G and H is defined to be the graph obtained by
taking one copy of G and |V (G)| copies of H and then forming the joins ⟨v⟩ +Hv = v +Hv for
each v ∈ V (G), where Hv is a copy of H corresponding to vertex v and is denoted by G ◦ H .
The following theorem is a characterization of interior Roman dominating function in the corona
of two nontrivial connected graphs.

Theorem 2.7. Let G and H be a nontrivial connected graphs and let ϕ = (V0, V1, V2) be an RDF
on G ◦H . Then ϕ is a γInR-function on G ◦H if and only if V2 = V (G) and V1 = ∅.

Proof. Let ϕ = (V0, V1, V2) be an RDF on G ◦H where G and H are nontrivial connected graphs.
Suppose that ϕ is a γInR-function on G + H . Seeking for contradiction. Assume for a moment
that V2 ̸= V (G) or V1 ̸= ∅. Consider V2 ̸= V (G). Then it implies that V2 ⊊ V (G) or V (G) ⊊ V2.
On one hand, we suppose that V2 ⊊ V (G). Then there exists v ∈ V (G) such that V (Hv) ⊈
NG◦H [V2] and so, V (G ◦ H) ̸= NG◦H [V2]. A contradiction. On the other hand, we suppose that
V (G) ⊊ V2. Then it follows that there exists a vertex u ∈ V2 \ V (G) such that u ∈ V (Hv) for
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some v ∈ V (G). Now, if H is a complete graph, then by the proof of Proposition 2.4, u is not an
interior vertex in G ◦H , a contradiction. Moreover, since V (G ◦H) = NG◦H [V (G)], we can set
W0 = V (G ◦H) \ V (G), W1 = ∅ and W2 = V (G). In that case, f = (W0,W1,W2) is an InRDF
on G ◦H . Observe that

ωInR
G◦H(f) = |W1|+ 2|W2|

= 2|V (G)|
< 2|V2|
= |V1|+ 2|V2|
= γInR(G ◦H).

A contradiction. Thus, we conclude that V2 = V (G). And since V (G ◦ H) = NG[V2] and ϕ is
γInR-function on G ◦H , it suffices to conclude that V1 = ∅.

Suppose that V2 = V (G) and V1 = ∅. Let v ∈ V2 = V (G). Then it follows that there exists
x ∈ V (Hv) and y ∈ V (G) such that dG◦H(x, y) = dG◦H(x, v) + dG◦H(v, y). And so V2 is an
interior vertex set in G ◦H . Seeking for contradiction. Assume for a moment that ϕ = (V0, V1, V2)
is an InRDF but not a γInR-function on G ◦ H . Then there exists g = (U0, U1, U2) such that g
is a γInR-function on G ◦ H for which U1 = ∅. It implies that γInR(G ◦ H) = |U1| + 2|U2| =
2|U2| < 2|V2| = |V1| + 2|V2| = ωInR

G◦H(ϕ). Thus, it means that |U2| < |V2|. Since V2 = V (G)
and V1 = ∅, it follows that there exists V (Hv) for some v ∈ V (G) such that V (Hv) ⊈ NG◦H [U2]
and so, V (G ◦ H) ̸= NG◦H [U2]. This is a contradiction. Therefore, it suffices to say that ϕ is a
γInR-function on G ◦H. This completes the proof.

The following corollary is immediate from Theorem 2.7.

Corollary 2.5. Let G be a nontrivial connected graph with |V (G)| = n and H be any nontrivial
connected graph. Then γInR(G ◦H) = 2n.

Conclusion

This study introduced a new variation of Roman domination in graphs called the interior Roman
dominating function, and some important properties were presented. Additionally, it is depicted
that for any graph G of order n, the lower bound of γInR(G) is max{γR(G), γIn(G)} and the
upper bound is min{2γIn(G), n}. The study also portrayed that for positive integers a, b and n
with 1 ≤ a ≤ b ≤ n, there exists a graph G such that γR(G) = a, γInR(G) = b and |V (G)| = n.
Moreover, this paper has shown that for any non-complete graph H , γInR(G) = 2 if and only if
G = K1+H where |V (H)| ≥ 2. Furthermore, characterizations of the interior Roman dominating
function in the join and corona of two graphs were discussed. Investigation on the characterization
of interior Roman domination under the binary operations, such as Cartesian and lexicographic
products, is highly recommended for future studies.
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