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Abstract

Let f : V (G) → [1, |V (G)|] be a bijective mapping of the vertex set of a graph G to the
integers 1 through |V (G)|. A labeling f is defined as a local edge antimagic labeling if, for any
two adjacent edges uv and vx in E(G), their weights satisfy wf (uv) ̸= wf (vx), where the weight
of an edge uv is given by wf (uv) = f(u) + f(v). The weight wf induces a proper edge coloring
on G. The local edge antimagic chromatic number of G, denoted χ′

lea(G), is the minimum number
of colors required among all colorings induced by local edge antimagic labelings of G. In this
paper, we investigate the local edge antimagic coloring of join product of graphs, particularly for
independent sets, paths, and cycles.
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1. Introduction

The concept of magic graphs originated from the work of Kotzig and Rosa in 1970, who intro-
duced magic valuations. In this framework, a graph is assigned edge labels such that the sum of
edge labels incident to each vertex (often including vertex labels) is the same for all vertices [11].
This idea, which aligns with the concept of a ”magic square” applied to graphs, opened a new
avenue in combinatorial mathematics. The study of magic graphs became a foundational topic in
graph labeling, inspiring further exploration into variations such as vertex-magic and edge-magic
graphs.
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Enomoto et al. expanded the field in 1998 by introducing (super) edge-magic graphs. These
graphs assign a bijection of labels to vertices and edges such that a constant sum arises when
combining edge labels with their incident vertex labels [5]. This extension refined the study of
magic graphs, paving the way for deeper combinatorial investigations.

Antimagic graphs, proposed later, flip the focus from uniformity to uniqueness. A graph is
antimagic if its edges can be labeled with distinct integers such that the sum of edge labels at each
vertex is distinct. The formalization of this concept addressed combinatorial configurations that
avoid symmetry, offering a counterpoint to magic graphs.

Significant contributions to this area were made by Bača et al., who in the early 2000s provided
new constructions for magic and antimagic graphs [2]. In 2007, they expanded their focus to edge-
antimagic graphs, emphasizing configurations where distinct sums are achieved at the vertices [3].
Antimagic graphs have since been studied in various graph families and operations.

The notion of local edge antimagic (LEA) graphs represents a localized extension of antimagic
labeling. Instead of focusing on the entire graph, this concept looks at pairs of edges. Specifically,
a graph is LEA if there exists a vertex labeling such that the sum of vertex labels incident to each
edges forms a proper edge coloring (i.e., distinct sums for adjacent edges).

The formal study of LEA labeling began with Agustin et al. in 2017. Their work defined
the concept and provided examples for specific graph families, such as paths, cycles, ladders,
stars, complete graph [1]. Moreover, Rajkumar and Nalliah [13] investigated even further by
considering several class of graphs, such as friendship graphs, wheels, fan graphs, and helm graphs.
A characterization of small number of graphs with small LEA chromatic numbers and bounds of
LEA chromatic number for any graphs were given in [7]. Most recently, Chandra and Silaban [4]
determined the LEA chromatic numbers for certain comb products involving path graphs. A study
of graphs which attains the highest LEA chromatic number is also conducted in [10]. Variations
of local antimagic labeling can be seen in [8, 9, 12, 14] and information about graph labeling in
general is provided in [6].

In this paper, we determine the LEA chromatic number of join product of graphs. First, we
present the LEA coloring of complete bipartite graph, a special case of join product, which gives a
basic understanding of LEA coloring in join products. Next, we provide a bound of LEA chromatic
number for the join product of any graphs. In addition, we investigated the LEA chromatic number
of the join product among paths, cycles, and independent sets.

2. Main Results

Let [a, b] be consecutive integers from a up to b inclusively. Let ∆(G) be the maximum degree
of a vertex among all vertices of G and let χ′(G) be the chromatic index of the graph G.

Let f : V (G) → [1, |V (G)|] be a bijective map. We call f to be local edge antimagic (LEA)
labeling if for every adjacent edges uv and vx in E(G), it holds that wf (uv) ̸= wf (vx) where
wf (uv) = f(u) + f(v). The LEA chromatic number of G, χ′

lea(G), is the least number of colors
taken over all edge-colorings induced by LEA labeling of G. It is known that all graphs admit a
LEA labeling [7]. In this study, it is safe to assume that graphs without edges have zero colors, or
equivalently χ′

lea(Km) = 0 for any positive integer m. It is evident that the following inequality
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holds:

∆(G) ≤ χ′(G) ≤ χ′
lea(G) ≤ |E(G)|.

Let G and H be undirected, finite and simple graphs. A join product of G and H , denoted by
G+H , is a graph defined by the vertex set

V (G+H) = V (G) ∪ V (H)

and the edge set

E(G+H) = E(G) ∪ E(H) ∪ {uv | u ∈ V (G), v ∈ V (H)}.

The join product of any two graph is always connected. The LEA chromatic number of several
special cases of join products have been determined. We write these results with an additional form
in join product.

Theorem 2.1. [13] For the friendship graph Fn
∼= K1 + nK2, we have

χ′
lea(Fn) =

{
3, if n = 1,

2n, if n ≥ 2.

Theorem 2.2. [13] For the wheel graph Wn
∼= K1 + Cn, we have

χ′
lea(Wn) =

{
5, if n = 3, 4,

n, if n ≥ 5.

Theorem 2.3. [13] For the fan graph Tn
∼= K1 + Pn, we have

χ′
lea(Tn) =

{
n+ 1, if n = 2, 3,

n, if n ≥ 4.

First, we will deal with complete bipartite graphs Km,n. It is known that this is another special
case of join product of two independent sets where Km,n

∼= Km +Kn.

Theorem 2.4. Let m and n be positive integers. It follows that χ′
lea(Km,n) = m+ n− 1.

Proof. Let Km,n be defined by the vertex set V (Km,n) = {ui, vj | i ∈ [1,m], j ∈ [1, n]} and the
edge set E(Km,n) = {uivj | i ∈ [1,m], j ∈ [1, n]}.

To show χ′
lea(Km,n) ≥ m + n − 1, let f be arbitary LEA labeling of Km,n. Without loss of

generality, we can consider only the case of f where f(ui) < f(ui+1) and f(vj) < f(vj+1) for
i ∈ [1,m− 1] and j ∈ [1, n− 1]. It follows that

f(ui) < f(ui+1)

f(ui) + f(vj) < f(ui+1) + f(vj)

wf (uivj) < wf (ui+1vj)
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and similarly we can deduce wf (uivj) < wf (uivj+1). This implies

wf (u1v1) < wf (u1v2) < · · · < wf (u1vn) < wf (u2vn) < · · · < wf (umvn)

or equivalently, we have m+ n− 1 distinct colors in Km,n. Therefore, χ′
lea(Km,n) ≥ m+ n− 1.

Next, we will show χ′
lea(Km,n) ≤ m+n− 1. Define a map f : V (G) → [1,m+n] as follows:

f(ui) = i, for i ∈ [1,m],

f(vj) = m+ j, for j ∈ [1, n].

Then, we have the following induced weights wf of f :

wf (uivj) = i+ j +m, for i ∈ [1,m], j ∈ [1, n].

It is not hard to deduce that wf will induce m+n−1 colors. Hence, χ′
lea(Km,n) ≤ m+n−1.

A consequence of the preceding theorem is that χ′
lea(G)− χ′(G) can be arbitrarily large.

Corollary 2.1. Let a and b be positive integers where a ≤ b ≤ 2a−1. There exists a graph G with
χ′(G) = a and χ′

lea(G) = b.

Proof. Consider G = Ka,b−a+1 and apply Theorem 2.4.

An example of Theorem 2.4 is given in Fig. 1.

Figure 1: The LEA coloring of K3,5 with χ′
lea(K3,5) = 7. All edges with the same weight are given the same colors.

Furthermore, we can utilize Theorem 2.4 to provide bounds for any join product of two graphs.

Theorem 2.5. Let G and H be graphs. We have

(1) χ′
lea(G+H) ≥ |V (G)|+ |V (H)| − 1,

(2) χ′
lea(G+H) ≤ χ′

lea(G) + χ′
lea(H) + |V (G)|+ |V (H)| − 1.

Proof. Let m = |V (G)| and n = |V (H)|. To show (1), assume there exists a LEA labeling f
of G + H with k colors where k < m + n − 1. If we delete all edges in G and H , then f is
a LEA labeling of Km,n with k colors. However, this is a contradiction to Theorem 2.4 since
χ′
lea(Km,n) = m+ n− 1.
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To show (2), let g be a LEA labeling of G and h be a LEA labeling of H . Define f : V (G +
H) → [1,m+ n] such that

f(v) =

{
g(v), if v ∈ V (G),

h(v) +m, if v ∈ V (H).

Then, we have the induced weight map

wf (uv) =


wg(uv), if u, v ∈ V (G),

f(u) + h(v) +m, if u ∈ V (G) and v ∈ V (H),

wh(uv) + 2m, if u, v ∈ V (H).

Here, all edges in G will use at most χ′
lea(G) colors and all edges in H will use at most χ′

lea(H)
colors. Meanwhile, if we delete all edges in G and H , then f is a LEA labeling of Km,n. This
implies that there are m + n − 1 colors that are connecting G and H . If the set of colors used in
G, H and in between are disjoint, then at the worst case we have χ′

lea(G) + χ′
lea(H) +m+ n− 1

colors. This shows (2).

Before we continue, we provide a labeling of a graph which we will utilize in the last two
theorem. Let n1, n2 ≥ 2,m1,m2 ≥ 1 be non-negative integers. Let G be a graph with the vertex
set

V (G) = {ui1 , u
′
j1
, vi2 , v

′
j2
| i1 ∈ [1,m1], j1 ∈ [1, n1], i2 ∈ [1,m2], j2 ∈ [1, n2]}

and any edge set E(G). Define a labeling f as follows.

f(ui1) = m1 − i1 + 1,

f(u′
j1
) =

{
m1 +

j1+1
2

, if j1 is odd,
m1 + n1 − j1

2
+ 1, if j1 is even,

f(vi2) = m1 + n1 + n2 + i2,

f(v′j2) =

{
m1 + n1 + n2 − j2+1

2
+ 1, if j2 is odd,

m1 + n1 +
j2
2
, if j2 is even.

(1)

Now, the lower bound provided in Theorem 2.5 is sharp. Other than Km +Kn, we also have
several families of join products.

Theorem 2.6. Let m1,m2, n1 and n2 be non-negative integers. We have χ′
lea(G) = m1 + m2 +

n1 + n2 − 1 if G is one of the following form:

(1) G ∼= (Km1 ∪ Pn1) + (Km2 ∪ Pn2), where n1, n2 ≥ 2,m1,m2 ≥ 1,
(2) G ∼= (Km1 ∪ Pn1) + (Km2 ∪ Cn2), where n1 ≥ 2, n2 ≥ 3,m1 ≥ 1,m2 ≥ n2+1

2
,

(3) G ∼= (Km1 ∪ Cn1) + (Km2 ∪ Cn2), where n1, n2 ≥ 3,m1 ≥ n1+1
2

,m2 ≥ n2+1
2

,
(4) G ∼= Km1 + (Km2 ∪ Pn2), where n1 = 0, n2 ≥ 2,m1,m2 ≥ 1,
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(5) G ∼= Km1 + (Km2 ∪ Cn2), where n1 = 0, n2 ≥ 3,m1 ≥ 1,m2 ≥ n2+1
2

.

Proof. First, we will show (1). Let n1, n2 ≥ 2,m1,m2 ≥ 1 be positive integers. Let G =
(Km1 ∪ Pn1) + (Km2 ∪ Pn2), be a graph defined by the vertex set

V (G) = {ui1 , u
′
j1
, vi2 , v

′
j2
| i1 ∈ [1,m1], j1 ∈ [1, n1], i2 ∈ [1,m2], j2 ∈ [1, n2]}

and the edge set

E(G) = {ui1vi2 , ui1v
′
j2
, | i1 ∈ [1,m1], i2 ∈ [1,m2], j2 ∈ [1, n2]}

∪ {u′
j1
vi2 , u

′
j1
v′j2 | j1 ∈ [1, n1], i2 ∈ [1,m2], j2 ∈ [1, n2]}

∪ {u′
j1
u′
j1+1, v

′
j2
v′j2+1 | j1 ∈ [1, n1 − 1], j2 ∈ [1, n2 − 1]}.

Let G be applied a labeling f defined in eq. (1). Let wf be the induced weight function. We
know that there would be m1 + n1 +m2 + n2 − 1 colors in the set of edges connecting G and H .
Now, if j1 is odd, then

wf (u
′
j1
u′
j1+1) = 2m1 + n1 + 1 = wf (u1v

′
2).

Otherwise, if j1 is even, it holds that

wf (u
′
j1
u′
j1+1) = 2m1 + n1 + 2 =


wf (u1v

′
4), if n2 ≥ 4,

wf (u1v
′
3), if n2 = 3,

wf (u1v
′
1), if n2 = 2.

Likewise, if j2 is odd, we have

wf (v
′
j2
v′j2+1) = 2m1 + 2n1 + n2 + 1 = wf (u

′
2v1),

and if j2 is even, it follows that

wf (v
′
j2
v′j2+1) = 2m1 + 2n1 + n2 =


wf (u

′
4v1), if n1 ≥ 4,

wf (u
′
3v1), if n1 = 3,

wf (u
′
1v1), if n1 = 2.

Therefore, wf induces only m1 +m2 + n1 + n2 − 1 colors. Consequently, χ′
lea(G) = m1 +m2 +

n1 + n2 − 1.
From here, the proof will be similar. Now, we will show (2). For positive integers n1 ≥

2, n2 ≥ 3,m1 ≥ 1,m2 ≥ n2+1
2

, let G = (Km1 ∪ Pn1) + (Km2 ∪ Cn2) be defined simply from
(Km1 ∪ Pn1) + (Km2 ∪ Pn2) with an edge addition of v′1v

′
n2

. Since they have the same vertex set,
we can also apply f in eq. (1) to V (G). If n2 is odd, it is evident that

wf (v
′
1v

′
n2
) = 2m1 + 2n1 +

3n2 + 1

2
= wf (u

′
2vn2+1

2
).
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Otherwise, if n2 is even, it holds that

wf (v
′
1v

′
n2
) = 2m1 + 2n1 +

3n2

2
= wf (u

′
2vn2

2
).

Hence, there are only m1 + m2 + n1 + n2 − 1 colors induced by wf . This implies χ′
lea(G) =

m1 +m2 + n1 + n2 − 1.
To show (3), let n1, n2 ≥ 3,m1 ≥ n1+1

2
,m2 ≥ n2+1

2
be positive integers. Let G = (Km1 ∪

Cn1) + (Km2 ∪Cn2) be defined from (Km1 ∪Pn1) + (Km2 ∪Cn2) with an edge addition of u′
1u

′
n1

.
Again, apply f in eq. (1) to V (G). If n1 is odd, then we have

wf (u
′
1u

′
n1
) = 2m1 +

n1 + 3

2
= wf (un1+1

2
v′2).

and also if n1 is even, it follows that

wf (u
′
1u

′
n1
) = 2m1 +

n1

2
+ 2 = wf (un1

2
v′2).

Therefore, χ′
lea(G) = m1 +m2 + n1 + n2 − 1.

The statement (4) is just an implication of (1) by omitting the labeling of the vertices of ui1

and removing some edges appropriately. Similarly, the statement (5) is an implication of (3) by
omitting the same labeling of ui1 and removing some edges appropriately.

Fig. 2 shows an example of LEA coloring of (K1 ∪ P3) + (K3 ∪ C4).

Figure 2: The LEA coloring of G = (K1 ∪ P3) + (K3 ∪ C4) with χ′
lea(G) = 10.

We also have the following bounds for the join product between paths and cycles.

Theorem 2.7. Let m and n be positive integers. It follows that

(1) m+ n− 1 ≤ χ′
lea(Pm + Pn) ≤ m+ n+ 1, where m,n ≥ 3,

(2) m+ n− 1 ≤ χ′
lea(Pm + Cn) ≤ m+ n+ 2, where m ≥ 2, n ≥ 3,

(3) m+ n− 1 ≤ χ′
lea(Cm + Cn) ≤ m+ n+ 3, where m,n ≥ 2.

Proof. The lower bound in each statement is just an implication of Theorem 2.5. Now, we just
need to prove the upper bound. To show the upper bound in (1), let G = Pm + Pn be defined
below

V (G) = {u′
i, v

′
j | i ∈ [1,m], j ∈ [1, n]}.
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Next, apply f in eq. (1) to G by omitting the vertices uk and vk for some k (since m1 = 0 = m2)
and fix n1 = m, n2 = n. The colors of edges connecting Pm and Pn are exactly m+ n− 1 colors.
Now, if i ∈ [1,m] is odd, then

wf (u
′
iu

′
i+1) = m+ 1

while if i ∈ [1,m] is even, it is evident that

wf (u
′
iu

′
i+1) = m+ 2 = wf (u

′
1v

′
2).

Meanwhile, if j ∈ [1, n] is odd, then

wf (v
′
jv

′
j+1) = 2m+ n+ 1

and if j ∈ [1, n] is even, we have

wf (v
′
jv

′
j+1) = 2m+ n = wf (u

′
2v

′
1).

Therefore, in addition to m+ n− 1 colors in edges connecting Pm and Pn, there are also the color
of wf (u

′
iu

′
i+1) when i is odd and wf (v

′
jv

′
j+1) when j is odd. It follows that χ′

lea(G) ≤ m+ n+ 1.
The statement (2) is a consequence of (1) by assuming the new edge has a unique color. Simi-

larly, (3) is implied by (2) by assuming again the uniqueness of the new edge.

To conclude this paper, we would like to propose new open problems that are not covered here.

Problem 1. Does there exists two graphs G and H such that

χ′
lea(G+H) = χ′

lea(G) + χ′
lea(H) + |V (G)|+ |V (H)| − 1?

Problem 2. Characterize graphs G and H which satisfies

χ′
lea(G+H) = |V (G)|+ |V (H)| − 1.

Problem 3. Determine the LEA chromatic number χ′
lea(G +H) for any other two graphs G and

H .
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