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Abstract

Let G be a simple, connected, and undirected graph. For m,n ∈ N, the fractional power
G

m
n =

(
G

1
n

)m
of G is constructed by taking the n-subdivision of G (replacing each edge with

a path of length n), and then raising the resulting graph to the m-th power (connecting any two
distinct vertices with distance at most m). Let ω(G) be the clique number of G and χ(G) be the
chromatic number ofG. Iradmusa formulated a closed form for the clique number ofG

m
n (ω(G

m
n ))

and conjectured that χ(G
m
n ) = ω(G

m
n ) for every m,n ∈ N where m

n
< 1 and ∆(G) ≥ 3. The

conjecture is true for certain special cases, such as paths, cycles, and complete graphs. However,
Hartke et. al. found a counterexample to the conjecture, that is the graphG = C3�K2 whenm = 3
and n = 5. In this paper, we aim to prove that the conjecture is true for some classes of graphs that
have not yet been addressed. We prove that χ(G

m
n ) = ω(G

m
n ) for star, wheel, friendship, and fan

graphs G.
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1. Introduction

All graphs G = (V,E) = (V (G), E(G)) considered in this paper are simple, connected, and
undirected. For any graphG and n ∈ N, as in [8], we define the n-subdivision ofG, denoted byG

1
n ,

to be the graph obtained from G by replacing every edge of G with a path of length n called a hy-
peredge. For every edge uv ∈ E (G), the hyperedge ux1x2 . . . xn−1v, or simply uv ofG

1
n , consists

of the ”old” vertices u, v, called terminal vertices, and the ”new” vertices x1, x2, . . . , xn−1 called
internal vertices. Also, as in [1], for m ∈ N, the m-power of G, denoted Gm, is the graph defined
on the same set of vertices asGwith an edge between any two vertices u, v iff their distance inG is
at most m. Formally, V (Gm) = V (G) and E (Gm) = {xy : x, y ∈ V (Gm) , 1 ≤ dG (x, y) ≤ m}.
Finally, following [7], for m

n
< 1 (that is, m < n), we define G

m
n =

(
G

1
n

)m
, which is called a

fractional power of G.
For any graphG, let χ(G) be its chromatic number, ω(G) be its clique number, and ∆(G) be its

maximum degree. The chromatic number of a graph G is the minimum number of colors needed
for a vertex coloring of G [9]. A clique in a graph G is a complete subgraph of G and the clique
number of G is the order of its largest clique [4]. On the vertex coloring of fractional powers
of graphs, Iradmusa conjectured in [7] that χ

(
G

m
n

)
= ω

(
G

m
n

)
must hold for every m,n ∈ N

whenever m
n
< 1 and ∆(G) ≥ 3. However, in [5], Hartke et. al. constructed a counterexample to

this particular conjecture: the graph G = C3�K2 when m = 3 and n = 5. The conjecture is then
reformulated as follows, simply excluding the counterexample.

Conjecture 1. If G is a connected graph with ∆(G) ≥ 3 and 1 < m < n, then χ
(
G

m
n

)
=

ω
(
G

m
n

)
, except when G = C3�K2.

Recent research includes the establishment of asymptotic bounds for χ
(
G

m
n

)
in cases m

n
= 2

3

and m = n [2], potentially helpful in investigating the equality to ω
(
G

m
n

)
. Furthermore, the

conjecture above has been proven for several classes of graphs, such as paths and cycles [7] as
well as complete graphs [5]. Continuing the quest, we mainly aim to prove the conjecture for star
graphs, then wheel graphs. We define the star graph Sk to be the graph with k + 1 vertices such
that the only edges are between one vertex, called the center, and every other vertex (each of which
is called a leaf, and are collectively called the leaves) [3].

We similarly define the k-wheel or wheel graph Wk to have k+ 1 vertices, being the graph join
of a cycle called the rim and a vertex called the hub [10], i.e. Wk = Ck +K1.

Due to their similarities in structure with wheel graphs, we then aim to prove the conjecture for
friendship graphs and fan graphs. As in [6], we define the friendship graph Fk to be constructed
by joining k copies of C3 with a common vertex. Also following [6], we define the fan graph F1,k

by F1,k = K1 + Pk.
For star and wheel graphs G, let u be the vertex of G with the highest degree and let xi be

the rest of the vertices of G. In G
1
n , x1

i , x
2
i , x

3
i , ..., x

n−2
i , xn−1

i are the vertices in the hyperedge
E(uxi) (See Figure 1) and x1

i,j, x
2
i,j, x

3
i,j, ..., x

n−2
i,j , xn−1

i,j are the vertices in the hyperedge E(xixj)

(See Figure 2). Note that using this notation, xki,j refers to the same vertex as xn−kj,i .
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u x1
i x2

i x3
i xn−1

i
xi

Figure 1: The hyperedge between u and xi

xi x1
i,j x2

i,j x3
i,j xn−1

i,j
xj

Figure 2: The hyperedge between xi and xj

Figure 3: The fractional power of wheel graph, W
1
3
3

In the following part, we define some terms (from [7]) that we will use in the proofs of our
results. For every xi ∈ V (G) \ {u}, the bubble in the hyperedge uxi in G

m
n is an ordered

⌊
m
2

⌋
-

tuple of vertices of G
m
n defined by:

Buxi =

(
x1
i , x

2
i , . . . , x

bm2 c
i

)
.

For every xi, xj ∈ V (G) \ {u} where xi 6= xj , the bubble in the hyperedge xixj in G
m
n is an

ordered
⌊
m
2

⌋
-tuple of vertices of G

m
n defined by:

Bxixj =

(
x1
i,j, x

2
i,j, . . . , x

bm2 c
i,j

)
.

If m is odd, then the crust at vertex u is the set of vertices of G
m
n defined as:

Cu =
{
x

m+1
2

i ∈ V
(
G

m
n

)
: uxi ∈ E(G)

}
.
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Lastly, the middle part of uxi (Muxi) and the middle part of xixj (Mxixj ) are the tuple of vertices
of G

m
n between the two bubbles (or the two crusts if m is odd) on the hyperedges uxi and xixj ,

respectively, defined by:

Muxi =

(
x
dm2 +1e
i , . . . , x

n−(dm2 +1e)
i

)
,

Mxixj =

(
x
dm2 +1e
i,j , . . . , x

n−(dm2 +1e)
i,j

)
.

2. Known Results

There are several proven theorems that play an important role in our proof. The first one
provides a lower bound for the chromatic number of a graph.

Theorem 2.1. [4] For every graph G of order n, χ (G) ≥ ω (G) .

Based on Theorem 2.1, the value of χ (G) is bounded below by the value of ω (G). Therefore,
to determine a lower bound for χ

(
G

m
n

)
, we need the value of ω

(
G

m
n

)
that has been found in the

following theorem.

Theorem 2.2. [7] Let G be a graph, n,m ∈ N and m < n. Then

ω
(
G

m
n

)
=


m+ 1 ∆ (G) = 1,
m
2

∆ (G) + 1 ∆ (G) ≥ 2,m ≡ 0 (mod 2) ,
m−1

2
∆ (G) + 2 ∆ (G) ≥ 2,m ≡ 1 (mod 2) .

In some references, it has been proven that some classes of graphs fulfill the conjecture. The
class of graphs needed in our proof is the complete graphs. The following theorem shows that
complete graphs satisfy the conjecture.

Theorem 2.3. [5] If G is a complete graph, then χ
(
G

m
n

)
= ω

(
G

m
n

)
.

3. Main Results

For each class of graph G that will be considered in this paper, we will show that χ
(
G

m
n

)
=

ω
(
G

m
n

)
by finding a vertex coloring for G

m
n using ω

(
G

m
n

)
colors, which results in χ

(
G

m
n

)
≤

ω
(
G

m
n

)
, thus proving χ

(
G

m
n

)
= ω

(
G

m
n

)
since χ

(
G

m
n

)
≥ ω

(
G

m
n

)
based on Theorem 2.1 above.

The rest of the proof is to color one of the maximum cliques in G
m
n , and then carefully color the

other vertices using only colors from the clique.
For notation purposes, we define k mod k = k and to simplify the proof, we calculate the

index in the modular of k.
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3.1. Coloring on star graphs
Theorem 3.1. Let Sk be a star graph on k + 1 vertices with k ≥ 3. Then χ

(
S

m
n
k

)
= ω

(
S

m
n
k

)
.

Proof. We prove the above theorem by coloring star graphs with minimal number of colors. We
will find the chromatic number of S

m
n
k by finding a vertex coloring using ω

(
S

m
n
k

)
colors for each

natural number k ≥ 3.
From Theorem 2.2,

ω
(
S

m
n
k

)
=

{
mk
2

+ 1, m is even
(m−1)k

2
+ 2, m is odd.

Note that for each i, j = 1, 2, 3, ..., k, every vertex in the bubble Buxi is adjacent to the vertex
u and all vertices in the bubble Buxj . Moreover, when m is odd, every vertex in the crust Cu is
adjacent to every vertex in the bubble Buxj for every j = 1, 2, 3, ..., k. Thus, a complete subgraph

of order ω
(
S

m
n
k

)
is formed and is a maximum clique.

Each vertex in the maximum clique has to be colored with different colors since they are ad-
jacent to one another. So, the number of colors used so far is ω

(
S

m
n
k

)
. Next, we will color other

vertices outside of the maximum clique without adding new colors.
Consider the hyperedge uxi. Since there exist a vertex in the bubble Buxi that is not adjacent

to the vertex outside of the bubble, we can assign the color of such vertices to the vertex outside of
the bubble. Notice that the vertex xm+1

i is not adjacent to u and can be colored with the same color
as u. Likewise, every vertex xm+p+1

i can be colored the same color as the vertex xpi . Continuing
this way, we color every vertex in the hyperedge. Applying the same method for other hyperedges,
we have a vertex coloring of S

m
n
k using ω

(
S

m
n
k

)
colors. The following algorithm describes the

method for coloring.

Algorithm 1 Coloring the Graph S
m
n
k

1: for i = 1, 2, ..., k do
2: for j = 1, 2, ..., n do
3: if j ≤

⌊
m
2

⌋
then

4: x
dm2 e+j
i ← x

bm2 c+1−j
i+1

5: else if j =
⌊
m
2

⌋
+ 1 then

6: x
dm2 e+j
i ← u

7: else if j >
⌊
m
2

⌋
+ 1 then

8: x
dm2 e+j
i ← x

j−dm2 e
i

9: end if
10: end for
11: end for

We conclude that the conjecture holds for star graph Sk with k + 1 vertices for all k ≥ 3, that
is, χ

(
S

m
n
k

)
= ω

(
S

m
n
k

)
.
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3.2. Coloring on wheel graphs

Theorem 3.2. LetWk be a wheel graph on k+1 vertices with k ≥ 3. Then χ
(
W

m
n
k

)
= ω

(
W

m
n
k

)
.

Proof. We prove the theorem by finding a coloring for wheel graphs with the minimal number of
colors. Note that the wheel graphW3 is isomorphic toK4 which fulfills the conjecture by Theorem
2.3. We will show that the conjecture holds for Wk with k ≥ 4.

Based on Theorem 2.2,

ω
(
W

m
n
k

)
=

{
mk
2

+ 1, m is even,
(m−1)k

2
+ 2, m is odd.

Note that each vertex in the bubbleBuxi is adjacent to the vertex u and all vertices in the bubble
Buxj , for each i, j = 1, 2, 3, ..., k. Moreover, whenm is odd, each vertex in the crust Cu is adjacent
to all vertices in the bubble Buxj for each j = 1, 2, 3, ..., k. Thus, a complete subgraph of order

ω
(
W

m
n
k

)
is formed and is the maximum clique.

Each vertex in the maximum clique has to be colored with different colors since they are ad-
jacent to one another. So, the number of colors used so far is ω

(
W

m
n
k

)
. Next, we will color the

vertices that belong to other bubbles and crusts without adding new colors.
Color every vertex xi using the color of vertex u. Since the vertices in Bxiu may be adjacent

to some vertices in Buxi , we color the vertices in Bxiu with the color of the vertices in Buxi+1

with attention to their ordering. Color all vertices in the bubble Bxixi+1
using the same colors and

sequence as the vertices in Buxi . Color all vertices in Bxixi−1
using the same colors and sequence

as the vertices in Buxi+2
. Thus, all bubbles have been colored. This method of coloring the bubbles

is described by the following algorithm.

Algorithm 2 Coloring the Bubble of xi
1: for i = 1, 2, . . . , n do
2: for j = 1, 2, . . . ,

⌊
m
2

⌋
do

3: xn−ji ← xji+1

4: xji,i+1 ← xji
5: xji,i−1 ← xji+2

6: end for
7: end for

Note that the first vertex in the middle part Muxi can be colored by the color of the last vertex
in the bubble Buxi+2

. Color the last vertex in the middle part Muxi (or, when m is odd, the vertices
in the crust Cxi that do not belong to the hyperedge uxi−1) using the color of the last vertex in the
bubble Buxi−1

. Continue this way of coloring to color the vertices in the middle part Muxi from
the front and back using the colors of the vertices in Buxi+2

and Buxi−1
alternatingly, with attention

to its order, until all vertices in the middle part has been colored or until there are no colors left.
When the number of middle part is less than m and m is odd, it is possible that one vertex in the
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middle part remains uncolored. That vertex is xm+1
i and so can be colored using the color of the

vertex u.
Using the same method, we can color the vertices in the middle part Mxixi+1

. Color the first
vertex in Mxixi+1

with the color of the last vertex in Bxiu and color the last vertex in Mxixi+1
(or,

when m is odd, the vertex in the crust Cxi+1
that belongs to the hyperedge xixi+1) with the color of

the last vertex in Bxixi−1
. Continue this way of coloring to color the vertices in Mxixi+1

alternately
from the front and back using the colors of the vertices from the bubble Bxiu for the front end of
Mxixi+1

and the bubbleBxixi−1
for the back end ofMxixi+1

. If xm+1
i,i+1 has not yet been colored, color

it with the color of xi.
Using the explained method above, if the number of vertices in the middle part is less than m,

then all vertices in the middle parts have already been colored, resulting in a vertex coloring for
W

m
n
k with ω(W

m
n
k ) colors. This method of coloring can be described by the following algorithm.

We denote the number of vertices in a middle part as Λ.

Algorithm 3 Coloring the Middle Part for Even m
1: p← 0, j ← 1
2: for i = 1, 2, . . . k do
3: while p 6= Λ do
4: x

bm2 c+j
i ← x

bm2 c+1−j
i+2

5: x
bm2 c+j
i,i+1 ← x

n−bm2 c−1+j

i

6: if
⌊
m
2

⌋
+ j 6=

⌊
m
2

⌋
+ Λ + 1− j then

7: x
bm2 c+Λ+1−j
i ← x

bm2 c+1−j
i−1

8: x
bm2 c+Λ+1−j
i,i+1 ← x

bm2 c+1−j
i,i−1

9: p← p+ 2
10: j ← j + 1
11: else
12: p← p+ 1
13: j ← j + 1
14: end if
15: end while
16: end for
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Algorithm 4 Coloring the Middle Part for Odd m
1: p← 0, j ← 1
2: for i = 1, 2, . . . , k do
3: while p 6= Λ + 1 do
4: x

bm2 c+j+1

i ← x
bm2 c+1−j
i+2

5: x
bm2 c+j+1

i,i+1 ← x
n−bm2 c−1+j

i

6: if
⌊
m
2

⌋
+ j + 1 6=

⌊
m
2

⌋
+ Λ + 3− j then

7: x
bm2 c+Λ+3−j
i ← x

bm2 c+1−j
i−1k

8: x
bm2 c+Λ+3−j
i,i+1 ← x

bm2 c+1−j
i,i−1

9: p← p+ 2
10: j ← j + 1
11: else
12: p← p+ 1
13: j ← j + 1
14: end if
15: end while

Algorithm 4 Coloring the Middle Part for Odd m

16: x
bm2 c+1

i,i+1 ← x
bm2 c+Λ+2

i

17: end for

56



www.ijc.or.id

On coloring of fractional ... | F. Hafizh, M.R.G. Maulana, C. Vienny, B.R. Joyosumarto, K.A. Sugeng

If the number of vertices in the middle part exceeds or equal to m, then there are vertices in
the middle part that have not yet been colored. Consider the middle part Muxi . The vertex xm+1

i

can be colored using the color of the vertex u. For the remaining vertices, the vertex xm+p+1
i can

be colored using the same color as vertex xpi . In this case, coloring all of the remaining vertices in
this manner, all vertices in the middle parts Muxi have been colored.

Consider the middle part Mxixi+1
. The vertex xm+1

i,i+1 can be colored using the color of the vertex
xi. For the remaining vertices, the vertex xm+p+1

i,i+1 can be colored using the color of the vertex
xpi,i+1. Therefore, all vertices in the middle parts Mxixi+1

have been colored, resulting in a coloring

for all vertices in W
m
n
k with ω

(
W

m
n
k

)
colors.

This method for coloring the remaining vertices in the middle part can be described by the
following algorithm.

Algorithm 5 Coloring the Rest of the Middle Part for Even m

1: p← m− 1, j ←
⌊
m
2

⌋
+ 1, α← 0, β ← 0

2: for i = 1.2, . . . , k do
3: while p 6= Λ do
4: if β ≡ 0 (mod 2) then

5: x
bm2 c+j
i ← xαi

6: x
bm2 c+j
i,i+1k ← xαi,i+1

7: else
8: x

bm2 c+j
i ← x

bm2 c−α
i+2

9: x
bm2 c+j
i,i+1 ← x

n−bm2 c+α
i

10: end if
11: α← α + 1
12: if α =

⌊
m
2

⌋
+ 1 or (α =

⌊
m
2

⌋
and β ≡ 1 (mod 2)) then

13: α← 0
14: β ← β + 1
15: end if
16: p← p+ 1
17: j ← j + 1
18: end while
19: end for
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Algorithm 6 Coloring the Rest of the Middle Part for Odd m

1: p← m, j ←
⌊
m
2

⌋
+ 2, α← 1, β ← 0

2: for i = 1, 2, . . . , k do
3: while p 6= Λ do
4: if β ≡ 0 (mod 2) then

5: x
bm2 c+j
i ← xαi

6: x
bm2 c+j
i,i+1 ← xαi,i+1

7: else
8: x

bm2 c+j
i ← x

bm2 c−α
i+2

9: x
bm2 c+j
i,i+1 ← x

n−bm2 c+α
i

10: end if
11: α← α + 1
12: if α =

⌊
m
2

⌋
+ 2 or (α =

⌊
m
2

⌋
and β ≡ 1 (mod 2)) then

13: α← 0
14: β ← β + 1
15: end if
16: p← p+ 1
17: j ← j + 1
18: end while
19: end for

To illustrate, the result of this whole process applied to W
2
6

4 is given in Figure 4. Note that the
edges generated by the 2-power operation are omitted for readability. Firstly, color the bubbles of
the graph using Algorithm 2. Since m = 2 is even, Algorithm 3 is then used to color a portion of
the middle parts. Finally, the remaining middle parts are colored using Algorithm 5.
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Figure 4: Example of W
2
6
4

We conclude that for all k ≥ 3, the wheel graph Wk on k + 1 vertices fullfils the conjecture,
that is, χ

(
W

m
n
k

)
= ω

(
W

m
n
k

)
.

Theorem 3.2 implies these corollaries.
Notice that after coloring every vertex in W

m
n
k , where k is even, we can alternately remove the

hyperedges of the rim, resulting in a coloring for the friendship graph F
m
n
k
2

with the same parameters
m and n. Therefore, the friendship graph also satisfies the conjecture.

Corollary 3.1. If Fk is a friendship graph with k ≥ 2, then χ
(

(Fk)
m
n

)
= ω

(
(Fk)

m
n

)
.

Notice that after coloring every vertex in W
m
n
k , we can remove one hyperedge of the rim,

resulting in a coloring for the fan graph F
m
n

1,k with the same parameters m and n. Therefore, the fan
graph also satisfies the conjecture.

Corollary 3.2. If F1,k is a fan graph with k ≥ 2, then χ
(

(F1,k)
m
n

)
= ω

(
(F1,k)

m
n

)
.

4. Conclusion

In this research, we have proven the conjecture for some classes of graphs, that is, star, wheel,
fan, and friendship graphs, each with n ≥ 3 vertices. For future studies, we recommend extending
this analysis to other classes of graphs to further validate or challenge the conjecture across differ-
ent structures. Additionally, searching for further counterexamples to the conjecture may prove to
be valuable, possibly further uncovering the conditions such that the conjecture does not hold.
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