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Abstract

A vertex k-labelling φ : V (G) −→ {1, 2, . . . , k} is called irregular k-labeling of the graph G if for
every two different edges e and f , there is wφ(e) 6= wφ(f); where the weight of an edge is given
by e = xy ∈ E(G) is wφ(xy) = φ(x) + φ(y). The minimum k for which the graph G has an edge
irregular k-labelling is called edge irregularity strength of G, denoted by es(G).
In the paper, we determine the exact value of the edge irregularity strength of caterpillars, n-star
graphs, (n, t)-kite graphs, cycle chains and friendship graphs.
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1. Introduction and preliminary results

The graph labeling has caught the attention of many authors and many new labeling results
appear every year. This popularity is not only due to the mathematical challenges of graph labeling,
but also for the wide range of its application, for instance X-ray, crystallography, coding theory,
radar, astronomy, circuit design, network design and communication design. Bloom and Golomb
studied applications of graph labelings to other branches of science [10, 11].

Received: 23 May 2017, Revised: 19 Aug 2017, Accepted: 20 Aug 2017.

82



www.ijc.or.id

Further results on edge irregularity strength of graphs | M. Imran, A. Aslam, S. Zafar and W. Nazeer

All the graphs in this paper are finite, undirected and simple. For a graph G, the V (G) and
E(G) denote the vertex set and edge set, respectively. A labeling of a graph G is any mapping that
sends some set of graph elements to a set of non-negative integers. If the domain is vertex set or
the edge set, the labeling is called vertex labelings or edge labelings, respectively. Moreover, if the
domain is V (G) ∪ E(G), then the labeling is called a total labeling. Thus for an edge k-labeling,
φ : E(G) −→ {1, 2, . . . , k}, the associated weight of a vertex x ∈ V (G) is

wφ(x) = Σφ(xy)

where the sum is taken over all the vertices y adjacent to x.
Chartrand et al. in [6] introduced edge k− labeling of a graph G such that wφ(x) 6= wφ(y) for
all vertices x, y ∈ V (G) with x 6= y. Such labelings were called irregular assignments and the
irregularity strength s(G) of a graph G is known as the minimum k for which G has irregular
assignments using labels atmost k. Some results on irregularity strength s(G) of a graph G can be
found in [1, 3, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].
Let φ be a vertex labeling of a graph G. Then we define the edge weight of xy ∈ E(G) to be
w(xy) = φ(x) + φ(y). A vertex labeling φ : V (G) → {1, 2, . . . , k} is called k− labeling. Ali et
al. in [2] introduced vertex k− labeling φ of a graph G such that wφ(e) 6= wφ(f) for every two
different edges e and f . Such a labeling were called an edge irregular k− labeling of the graph
G. The minimum k for which the graph G has an edge irregular k− labeling is called the edge
irregularity strength of G, denoted by es(G).
They gives a lower bound of the parameter es(G) and determine the exact values of the edge
irregularity strength for several family of graphs namely, paths, stars, double stars and cartesian
product of two paths.

Theorem 1.1 ([2]). Let G be simple graph with maximum degree ∆ = ∆(G). Then

es(G) ≥ max
{
d|E(G)|+ 1

2
e,∆(G)

}
In this paper, we we determine the exact value of edge irregularity strength of we determine the

exact value of the edge irregularity strength of caterpillars, n-star graphs, (n, t)-kite graphs, cycle
chains and friendship graphs.

2. Main results

Let Pn be a path on n vertices and let Pn(k) be the graph which is obtained by attaching k
edges to each vertex of Pn. Then Pn(k) is a caterpillar graph. The vertex set V (Pn(k)) and edge
set E(Pn(k)) of this caterpillar graph Pn(k) are V (Pn(k)) = {ui, uij : 1 ≤ i ≤ n; 1 ≤ j ≤ k} and
E(Pn(k)) = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {uiuij : 1 ≤ i ≤ n; 1 ≤ j ≤ k} respectively.

Theorem 2.1. Let Pn(k) be the caterpillar graph. If n is even, then es(Pn(k)) = n(k+1)
2

.

Proof. Let Pn(k) be a caterpillar graph. According to Theorem 1.1[2] we have that es(Pn(k)) ≤⌈
n(k+1)

2

⌉
= n(k+1)

2
. To prove the equality, it suffices to prove the existence of an edge irregular
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n(k+1)
2

labeling.
Let φ1 : V (Pn(k))→ {1, 2, . . . , n(k+1)

2
} be vertex labeling such that

φ1(ui) =

{
(k+1)i

2
, i ≡ 0 (mod 2);

i(k+1)−k+1
2

, i ≡ 1 (mod 2).

φ1(uij) =

{
j − k + i(k+1)

2
, i ≡ 0 (mod 2);

j + (i−1)(k+1)
2

, i ≡ 1 (mod 2).

Sincewφ1(uiui+1) = (k+1)i+1 andwφ1(uiuij) = k(i−1)+i+j for 1 ≤ i ≤ n and 1 ≤ j ≤ k, the
weights of the edges under the labeling φ1 successively attain values 2, 3, . . . , n(k+1). We can see
that all vertex labels are at most n(k+1)

2
and edge weights are distinct for all pairs of distinct edges.

Therefore the labeling φ1 is suitable edge irregular n(k+1)
2

labeling. Hence es(Pn(k)) = n(k+1)
2

.

The gluing together of identical cycles appears in various guises in the literature. But the con-
struction of chains of cycles, with adjacent cycles sharing a single common vertex, is not prevalent.
For this reason, we require the following definition. The graph C2

n results from attaching two n-
cycles together at a single shared vertex. Continuing in this manner, we define C3

n by attaching a
third n-cycle to one of the n-cycles of C2

n in a similar uniform manner so that the cycle containing
two shared vertices consists of two identical n

2
-paths. Recursively, the graphCm

n consists of a chain
of m consecutive n-cycles. We refer to each of the graphs in this family as a cycle chain.

Theorem 2.2. Let Cm
n be cycle chain. If n is even, then

es(Cm
n ) =

mn

2
+ 1

Proof. The vertices of Cm
n are identified as follows. First, the shared vertices of cycles Ci and Ci+1

are identified as ci for 1 ≤ i ≤ m − 1. Also we identify a vertex of C1 and Cm to be c0 and cm
respectively in such a way that we have n

2
− 1 vertices in between c0 and c1 and cm−1 and cm on

both sides . For 1 ≤ i ≤ m, the remaining vertices are identified as ci,1, ci,2, . . . , ci,n
2
−1 if we move

clockwise from the vertex ci−1 to the vertex ci and c′i,1, c
′
i,2, . . . , c

′
i,n

2
−1 if we move anticlockwise

from the vertex ci−1 to the vertex ci.
From Theorem 1.1 it follows that es(Cm

n ) ≥
⌈
mn+1

2

⌉
= mn

2
+ 1. For the converse, we define a

suitable edge irregular labeling φ2 : V (Cm
n )→ {1, 2, . . . , mn

2
+ 1} as follows:

φ2(ci) = 1 +
n

2
i for 0 ≤ i ≤ m

The remaining vertices of Cm
n are labeled depending on whether n

2
≡ 0 (mod 2) or n

2
≡ 1

(mod 2).
Case I. If n

2
≡ 0mod(2), then for 1 ≤ j ≤ n

2
− 1 and 1 ≤ i ≤ m we define φ2 as,

φ2(ci,j) =

{
j + 1 + n(i−1)

2
, j ≡ 0 (mod 2)

j + n(i−1)
2

, j ≡ 1 (mod 2).
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and

φ2(c
′
i,j) = j + 1 +

n(i− 1)

2

Since wφ2(cici+1,1) = 2 + ni, wφ2(cic
′
i+1,1) = 3 + ni for 0 ≤ i ≤ m − 1 and wφ2(ci,jci,j+1) =

2j + 2 + n(i− 1), wφ2(c
′
i,jc
′
i,j+1) = 2j + 3 + n(i− 1) for 1 ≤ i ≤ m and 1 ≤ j ≤ n

2
− 1, so the

edge weights are distinct for all pairs of distinct edges. Thus the vertex labeling φ2 is an mn
2

+ 1-
labeling.
Case 2. If n

2
≡ 1 (mod 2), then for 1 ≤ j ≤ n

2
− 1 and 1 ≤ i ≤ m we define φ2 as,

φ2(ci,j) =


j + n(i−1)

2
, j ≡ 0 (mod 2), and i ≡ 1 (mod 2);

j + 1 + n(i−1)
2

, j ≡ 1 (mod 2) and i ≡ 1 (mod 2);
j + 1 + n(i−1)

2
, j 6= 1 and i ≡ 0 (mod 2);

n(i−1)
2

, j = 1 and i ≡ 0 (mod 2).

and

φ2(c
′
i,j) =



2j + n(i−1)
2

, j ≡ 0 (mod 2) and i ≡ 1 (mod 2);
j + n(i−1)

2
, j ≡ 1 (mod 2) and i ≡ 1 (mod 2);

j + 1 + n(i−1)
2

, j 6= 1, j ≡ 1 (mod 2) and i ≡ 0 (mod 2);
3 + n(i−1)

2
, j = 1 and i ≡ 0 (mod 2);

j + n(i−1)
2

, j ≡ 0 (mod 2) and i ≡ 0 (mod 2).

Now for 0 ≤ i ≤ m− 1, we have wφ2(cici+1,1) = 3 + ni, wφ2(cic
′
i+1,1) = 2 + ni if i ≡ 0 (mod 2)

and wφ2(cici+1,1) = 1 + ni, wφ2(cic
′
i+1,1) = 4 + ni if i ≡ 1 (mod 2). Also for 1 ≤ i ≤ m and

j 6= 1, we have wφ2(ci,jci,j+1) = 2j + 2 + n(i − 1), wφ2(c
′
i,jc
′
i,j+1) = 2j + 3 + n(i − 1) if i ≡ 1

(mod 2) and wφ2(ci,jci,j+1) = 2j + 3 + n(i − 1), wφ2(c
′
i,jc
′
i,j+1) = 2j + 2 + n(i − 1) if i ≡ 0

(mod 2). It is not difficult to see that all vertex labels are at most mn
2

+ 1 and the weights of the
edges are pairwise distinct. Thus the vertex labeling φ2 is an mn

2
+ 1-labeling.

Truszczynski [4] defines a dragon as a graph obtained by joining a cycle graph Cn to a path Pt
of length t with a bridge. Kim and park [19] call them (n, t)− kites. Next theorem gives the exact
value of the edge irregularity strength for (n, t)− kite.

Theorem 2.3. Let G = (n, t)− kite. Then

es(G) =
⌈n+ t+ 1

2

⌉
Proof. Let G = (n, t)− kite graph, the vertex set of G is

{vi|1 ≤ i ≤ n} ∪ {ui|1 ≤ i ≤ t}

and the edge set of G is

{vivi+1|1 ≤ i ≤ n− 1} ∪ {uiui+1|1 ≤ i ≤ t− 1} ∪ {vnv1, u1v1}
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By Theorem 1.1 it follows that es(G) =
⌈
n+t+1

2

⌉
. For the converse, we define a vertex

⌈
n+t+1

2

⌉
-labeling φ3 as follows:
Case 1. If n = 2k and k ≡ 0 (mod 2), then we define φ3 : V (G)→ {1, 2, . . . ,

⌈
n+t+1

2

⌉
} as

φ3(vi) =


k − i+ 2, 1 ≤ i ≤ k and i ≡ 1 (mod 2);
k − i+ 1, 1 ≤ i ≤ k and i ≡ 0 (mod 2);
i− k, k + 1 ≤ i ≤ n.

φ3(ui) =

{
k + i+1

2
, i ≡ 1 (mod 2);

k + i
2

+ 1, i ≡ 0 (mod 2)).

Since, wφ3(vivi+1) = 2(k− i) + 2 for 1 ≤ i ≤ k, wφ2(vivi+1) = 2(i−k) + 1 for k+ 1 ≤ i ≤ n
and wφ3(uiui+1) = n + i + 2, the weights of the edges under the labeling φ3 successively attain
values 2, 3, . . . , n + t + 1. We can see that all vertex labels are at most

⌈
n+t+1

2

⌉
and the edge

weights are distinct for all pairs of distinct edges. Therefore the labeling φ3 is a suitable edge
irregular

⌈
n+t+1

2

⌉
-labeling.

Case 2. If n = 2k and k ≡ 1 (mod 2), then we define φ3 : V (G)→ {1, 2, . . . ,
⌈
n+t+1

2

⌉
} as

φ3(vi) =



k − i− 1, 1 ≤ i ≤ k − 2;
1, i = k − 1;
i− k + 3, k ≤ i ≤ 2k − 3 and i ≡ 1 (mod 2);
i− k + 2, k ≤ i ≤ 2k − 3 and i ≡ 0 (mod 2);
k + 1, i = 2k − 2, 2k − 1;
k − 1, i = 2k.

φ3(ui) =

{
k + i+1

2
, i ≡ 1 (mod 2);

k + i
2

+ 1, i ≡ 0 (mod 2).

It is not difficult to see that all vertex labels are at most
⌈
n+t+1

2

⌉
and the weights of the edges

are pairwise distinct. Thus the function φ3 is the desired edge irregular
⌈
n+t+1

2

⌉
-labeling.

Case 3. If n = 2k + 1 and k ≡ 0 (mod 2), then we define φ3 : V (G)→ {1, 2, . . . ,
⌈
n+t+1

2

⌉
} as

φ3(vi) =


k − i+ 2, 1 ≤ i ≤ k and i ≡ 1 (mod 2);
k − i+ 1, 1 ≤ i ≤ k and i ≡ 0 (mod 2);
i− k, k + 1 ≤ i ≤ n.

φ3(ui) =

{
k + i+3

2
, i ≡ 1 (mod 2);

k + i
2

+ 1, i ≡ 0 (mod 2).

From discussion of Case I, it is clear that φ3 is suitable
⌈
n+t+1

2

⌉
− labeling.

Case 4. If n = 2k and k ≡ 1 (mod 2), then we define φ3 : V (G)→ {1, 2, . . . ,
⌈
n+t+1

2

⌉
} as

φ3(vi) =


k − i− 1, 1 ≤ i ≤ k − 2;
1, i = k − 1;
i− k + 3, k ≤ i ≤ 2k − 4 and i ≡ 1 (mod 2);
i− k + 2, k ≤ i ≤ 2k − 4 and i ≡ 0 (mod 2);
3k − i, 2k − 3 ≤ i ≤ n.
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φ3(ui) =

{
k + i+3

2
, i ≡ 1 (mod 2);

k + i
2

+ 1, i ≡ 0 (mod 2).

We can see that all vertex labels are at most
⌈
n+t+1

2

⌉
and the edge weights are distinct for all

pairs of distinct edges. Therefore the labeling φ3 is a suitable edge irregular
⌈
n+t+1

2

⌉
-labeling.

Hence, es(G) =
⌈
n+t+1

2

⌉
.

In [7] Seoud and El Sakhawi introduced the following operation of graphs. The symmetric
product G1 ⊕ G2, of two graphs G1 and G2, is the graph having vertex set V (G1) × V (G2) and
edge set {(u, v)(u′, v′ : uu′ ∈ E(G1) or vv′ ∈ E(G2) but not both}.

Theorem 2.4. Let G = Pn⊕K∗2 , where Pn is a path of order n and K∗2 is a null graph of order 2.
Then

es(G) =
⌈4n− 3

2

⌉
Proof. Let G = Pn ⊕ K∗2 be symmetric product of Pn and K∗2 , the vertex set of G is V (G) =
{(xi, yj)|1 ≤ i ≤ n, 1 ≤ j ≤ 2} and the edge set of G is E(G) = {(xi, yj)(xi+1, yj)}
∪{(xi, y1)(xi+1, y2)} ∪{(xi, y2)(xi+1, y1)} for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ 2. So Pn ⊕ K∗2 is
a graph of order 2n and size 4n − 4. As 4(Pn ⊕K∗2) = 4 then from Theorem 1.1 it follows that
es(G) ≥

⌈
4n−3

2

⌉
.

For the converse, we define a suitable edge irregular labeling φ4 : V (G) → {1, 2, . . . ,
⌈
4n−3

2

⌉
} as

follows:

φ4(xi, y1) = 2i− 1

φ4(xi, y2) =

{
2i− 2, i ≡ 0 (mod 2);
2i+ 1, i ≡ 1 (mod 2).

Since, wφ4(xi, y1)(xi+1, y1) = 4i, wφ4(xi, y2)(xi+1, y2) = 4i+1, wφ4(xi, y1)(xi+1, y2) = 4i−1
if i ≡ 1 (mod 2), wφ4(xi, y1)(xi+1, y2) = 4i+ 2 if i ≡ 0 (mod 2), wφ4(xi, y2)(xi+1, y1) = 4i− 1
if i ≡ 0 (mod 2) and wφ4(xi, y2)(xi+1, y1) = 4i + 2 if i ≡ 1 (mod 2), the weights of the edges
under the labeling φ4 successively attain values 3, 4, . . . , 4n− 2. We can see that all vertex labels
are at most

⌈
4n−3

2

⌉
and the edge weights are distinct for all pairs of distinct edges. Therefore the

labeling φ4 is a suitable edge irregular
⌈
4n−3

2

⌉
-labeling.

Let Ct
4 denote the one-point union of t cycles of length 4. So Ct

4 is a graph of order 3t+ 1 and
size 4t. As 4(Ct

4) = 2t then from Theorem 1.1 it follows that es(G) ≥
⌈
4t+1
2

⌉
. Next theorem

gives the exact value of edge irregularity strength of Ct
4

Theorem 2.5. Let Ct
4 be friendship graph, then

es(Ct
4) =

⌈4t+ 1

2

⌉
= 2t+ 1
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Proof. The vertices of Ct
4 are identified as follows: the common vertex of each cycle is identified

as u. The remaining vertices of cycle Ci are identified as ci,1, ci,2, ci,3 if we complete the cycle
moving clockwise from the vertex u to itself. Now, for 1 ≤ i ≤ t we construct the function
φ5 : V (Ct

4)→ {1, 2, . . . , 2t+ 1} as follows:

φ5(u) = 2t+ 1

φ5(ci,1) = 2i− 1

φ5(ci,2) = 1

φ5(ci,3) = 2i

One can see observe the labeling φ5 is an edge irregular 2t+1-labeling, which implies the assertion.

Let T (n, k) be a graph obtained by connecting a vertex v to the central vertices of n copies
of star on k vertices. In particular, n copies of star on k + 1 vertices shares a common single
vertex v. We call T (n, k) a n− star graph. The vertex set V (T (n, k)) and edge set E(T (n, k)) are
V (T (n, k)) = {v} ∪ {ui : 1 ≤ i ≤ n} ∪ {uij : 1 ≤ i ≤ n; 1 ≤ j ≤ k − 1} and E((T (n, k)) =
{vui : 1 ≤ i ≤ n} ∪ {uiuij : 1 ≤ i ≤ n; 1 ≤ j ≤ k − 1} respectively. So T (n, k) is a graph
of order nk + 1 and size nk. As 4(T (n, k)) = max{n, k} then from Theorem 1.1 it follows that
es(T (n, k)) ≥

⌈
nk+1

2

⌉
.

An exact value of the edge irregularity strength of n-star graph is given by the following theorem.

Theorem 2.6. Let G = T (n, k) be n− star graph, then es(G) = dnk+1
2

⌉
Proof. We define a suitable edge irregular labeling φ6 : V (T (n, k)) → {1, 2, . . . , dnk+1

2

⌉
} as

follows:

φ6(v) = dnk + 1

2

⌉
The remaining vertices of T (n, k) are labeled depending on whether n ≡ 0 (mod 2) or n ≡ 1
(mod 2).
Case 1. If n ≡ 0 (mod 2), then we define φ6 as,

φ6(ui) =

{
i, 1 ≤ i ≤ n

2
;

k(2i−n)
2

+ 1, n
2
< i ≤ n.

φ6(uij) =


j − k + i(k − 2) + 2, 1 ≤ i ≤ n

2
;

j − k + n(k−1)
2

, i = n
2

+ 1 and 1 ≤ j ≤ n
2
;

j + k(n−2)
2

, n
2
< k − 1, i = n

2
+ 1 and n

2
< j ≤ n;

j + k(n−2)
2

+ 1, i > n
2

+ 1.

We can see that all vertex labels are at most dnk+1
2

⌉
= nk

2
+ 1 and edge weights are distinct

for all pairs of distinct edges. Therefore the labeling φ6 is suitable edge irregular nk
2

+ 1 labeling.
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Hence es(T (n, k)) = nk
2

+ 1
Case 2.1. If n ≡ 1 (mod 2) and n = k, then we define φ6 as,

φ6(ui) =

{
i, 1 ≤ i ≤ n+1

2
;

k(2i−n)+1
2

, n+1
2
< i ≤ n.

φ6(uij) =

{
j − k + i(k − 2) + 2, 1 ≤ i ≤ n+1

2
;

j + (n+1)(n+2)
2

− 5n+1
2
, i > n+1

2
.

We can see that all vertex labels are at most dnk+1
2

⌉
= nk+1

2
and edge weights are distinct for all

pairs of distinct edges. Therefore the labeling φ6 is suitable edge irregular nk+1
2

labeling. Hence
es(T (n, k)) = nk+1

2
.

Case 2.2. If n ≡ 1 (mod 2) and n > k, then we define φ6 as,

φ6(ui) =

{
i, 1 ≤ i ≤ n+1

2
;⌈

nk+1
2

⌉
− (n− i)k, n+1

2
< i ≤ n.

φ6(uij) =


j − k + i(k − 2) + 2, 1 ≤ i ≤ n+1

2
;

j + (n−1)(2k−1)
2

−
⌈
nk+1

2

⌉
, i = n+3

2
and j ≤

⌈
n+k
2

⌉
− k;

j + n+1+k(n−1)
2

−
⌈
n+k
2

⌉
, i = n+3

2
and j >

⌈
n+k
2

⌉
− k;

j − k +
⌈
nk+1

2

⌉
, i > n+3

2
.

We can see that the labeling φ6 is an edge irregular
⌈
nk+1

2

⌉
-labeling.

Case 2.3. If n ≡ 1 (mod 2) and n < k, then we define φ6 as,

φ6(ui) =

{
i, 1 ≤ i ≤ n−1

2
;⌈

nk+1
2

⌉
− (n− i)k, n−1

2
< i ≤ n.

φ6(uij) =


j − k + i(k − 2) + 2, 1 ≤ i ≤ n−1

2
;

j + 1 + (n−1)(2k−1)
2

−
⌈
nk+1

2

⌉
, i = n+1

2
and j <

⌈
n+k
2

⌉
;

j + n+1+k(n−1)
2

−
⌈
n+k
2

⌉
, i = n+1

2
and j ≥

⌈
n+k
2

⌉
;

j − k +
⌈
nk+1

2

⌉
, i > n+1

2
.

We can see that all vertex labels are at most dnk+1
2

⌉
and edge weights are distinct for all pairs

of distinct edges. Therefore the labeling φ6 is suitable edge irregular dnk+1
2

⌉
labeling. Hence

es(T (n, k)) = dnk+1
2

⌉
.
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