INDONESIAN JOURNAL

OF COMBINATORICS

On the metric dimension of Buckminster-fullerene-net graph

Lyra Yulianti ${ }^{1 \mathrm{a}}$, Des Welyyanti ${ }^{\text {a }}$, Yanita ${ }^{\text {a }}$, Muhammad Rafif Fajri ${ }^{\text {a }}$, Suhadi Wido Saputro ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Andalas University
Kampus UNAND Limau Manis Padang 25163, Indonesia
${ }^{b}$ Combinatorial Mathematics Research Group,
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
lyra@sci.unand.ac.id

Abstract

The metric dimension of an arbitrary connected graph G, denoted by $\operatorname{dim}(G)$, is the minimum cardinality of the resolving set W of G. An ordered set $W=\left\{w_{1}, w_{2}, \cdots, w_{k}\right\}$ is a resolving set of G if for all two different vertices in G, their metric representations are different with respect to W. The metric representation of a vertex v with respect to W is defined as k-tuple $r(v \mid W)=$ $\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)$, where $d\left(v, w_{j}\right)$ is the distance between v and w_{j} for $1 \leq j \leq k$. The Buckminsterfullerene graph is a 3-reguler graph on 60 vertices containing some cycles C_{5} and C_{6}. Let B_{60}^{t} denotes the $t^{t h} B_{60}$ for $1 \leq t \leq m$ and $m \geq 2$. Let v_{t} be a terminal vertex for each B_{60}^{t}. The Buckminsterfullerene-net, denoted by $H:=\operatorname{Amal}\left\{B_{60}^{t}, v \mid 1 \leq t \leq m ; m \geq 2\right\}$ is a graph constructed from the identification of all terminal vertices v_{t}, for $1 \leq t \leq m$ and $m \geq 2$, into a new vertex, denoted by v. This paper will determine the metric dimension of the Buckminsterfullerene-net graph H.

[^0][^1]
1. Introduction

Let $G=(V, E)$ be a simple, finite and undirected graph, where $V=V(G)$ and $E=E(G)$ are the vertex-set and the edge-set of G, respectively. The distance between two arbitrary vertices u, v in G, denoted by $d(u, v)$, is the length of the shortest path between them. Let W be an ordered subset of V. The metric representation of some vertex $v \in V(G)$ with respect to W is defined as k-vector $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \cdots, d\left(v, w_{k}\right)\right)$. If $r(u \mid W) \neq r(v \mid W)$ for every two vertices u, v in G, then W is called the resolving set of G. The minimum cardinality of W is defined as the metric dimension of G, denoted by $\operatorname{dim}(G)$ [5]. Other graph terminologies and notations are taken from [6].

The fundamental results regarding the metric dimension of a graph are given by Chartrand et al. [5]. They stated the characterizations of some connected graph G with $\operatorname{dim}(G)=1, \operatorname{dim}(G)=$ $n-1$ or $\operatorname{dim}(G)=n-2$, and determined the metric dimension of cycle C_{n} and an arbitrary tree T. Another significant results are the metric dimension of regular bipartite graphs [3], fan F_{n} [4], unicyclic graphs [8], n-partite complete graphs [10], the lexicographic product of graphs [11], wheels, generalized wheel [14] and Jahangir graph [15]. Next, Yulianti et al. [16] determined the metric dimension of thorn-subdivided graph $T D(G)$ of an arbitrary connected graph G on n vertices. Recent result is the metric dimension of the triangle-net graph by Yulianti et al. in [17].

Akhter et al. [1] stated that the Fullerene molecule discovered by Kroto et al. [7] can be represented as a Fullerene graph. In the same paper, they considered the metric dimension of $(3,6)$ Fullerene and $(4,6)$-Fullerene, where $(k, 6)$-Fullerene is a planar 3-connected graph containing cycles on k and 6 vertices. The Buckminsterfullerene graph, denoted by B_{60}, is one of the (5,6)Fullerene on 60 vertices. The definition of B_{60} was taken from Andova et al. [2].

Putri et al. [9] stated that the metric dimension of the Buckminsterfullerene graph B_{60} is three. Using this result, we constructed the Buckminsterfullerene-net graph as follows. Denote B_{60}^{t} as the $t^{t h}$ Buckminsterfullerene graph B_{60} for $1 \leq t \leq m$ and $m \geq 2$; and define v_{t} as the terminal vertex for every B_{60}^{t}. The Buckminsterfullerene-net, denoted by $H:=\operatorname{Amal}\left\{B_{60}^{t}, v \mid 1 \leq t \leq m ; m \geq 2\right\}$ is a graph constructed from the identification of all terminal vertices v_{t}, for $1 \leq t \leq m$ and $m \geq 2$, into a new vertex, denoted by v. In this paper we determine the metric dimension of the Buckminsterfullerene-net graph H.

2. The Buckminsterfullerene-net Graph

Putri et al. [9] gave the vertex set and the edge set of B_{60} as follows.

$$
\begin{align*}
V\left(B_{60}\right)= & \left\{v_{i}, z_{i} \mid 1 \leq i \leq 5\right\} \cup\left\{w_{j}, y_{j} \mid 1 \leq j \leq 15\right\} \cup\left\{x_{k} \mid 1 \leq k \leq 20\right\}, \tag{1}\\
E\left(B_{60}\right)= & \left\{v_{l} v_{l+1}, z_{l} z_{l+1} \mid 1 \leq l \leq 4\right\} \cup\left\{w_{m} w_{m+1}, y_{m} y_{m+1} \mid 1 \leq m \leq 14\right\} \\
& \cup\left\{x_{k} x_{k+1} \mid 1 \leq k \leq 19\right\} \cup\left\{v_{1} v_{5}, z_{1} z_{5}, w_{1} w_{15}, y_{1} y_{15}, x_{1} x_{20}\right\} \\
& \cup\left\{v_{i} w_{3 i-2}, w_{3 i-1} x_{4 i-2}, x_{4 i-1} y_{3 i-1} \mid 1 \leq i \leq 5\right\} \\
& \cup\left\{w_{3 l} x_{4 l+1}, x_{4 l} y_{3 l+1}, y_{3 l} z_{l+1} \mid 1 \leq l \leq 4\right\} \\
& \cup\left\{w_{15} x_{1}, x_{20} y_{1}, y_{15}, z_{1}\right\} . \tag{2}
\end{align*}
$$

The Buckminsterfullerene graph B_{60} is given in Figure 1.

Figure 1. [9] The Buckminsterfullerene graph B_{60}

Let t be a positive integer, $1 \leq t \leq m$, and $m \geq 2$. Denote $B_{60}^{(t)}$ as the $t^{\text {th }}$ Buckminsterfullerene. The vertex set and the edge set of $B_{60}^{(t)}$ are defined similarly as in (1) and (2).

$$
\begin{aligned}
V\left(B_{60}^{(t)}\right)= & \left\{v_{t, i}, z_{t, i} \mid 1 \leq i \leq 5\right\} \cup\left\{w_{t, j}, y_{t, j} \mid 1 \leq j \leq 15\right\} \cup\left\{x_{t, k} \mid 1 \leq k \leq 20\right\}, \\
E\left(B_{60}^{(t)}\right)= & \left\{v_{t, l} v_{t, l+1}, z_{t, l} z_{t, l+1} \mid 1 \leq l \leq 4\right\} \cup\left\{w_{t, m} w_{t, m+1}, y_{t, m} y_{t, m+1} \mid 1 \leq m \leq 14\right\}, \\
& \cup\left\{x_{t, n} x_{t, n+} \mid 1 \leq n \leq 19\right\} \cup\left\{v_{t, 1} v_{t, 5}, z_{t, 1} z_{t, 5}, w_{t, 1} w_{t, 15}, y_{t, 1} y_{t, 15}, x_{t, 1} x_{t, 20}\right\}, \\
& \cup\left\{v_{t, i} w_{t, 3 i-2} \mid 1 \leq i \leq 5\right\} \cup\left\{w_{t, 3 i-1} x_{t, 4 i-2} \mid 1 \leq i \leq 5\right\} \cup\left\{w_{t, 3 l} x_{t, 4 l+1} \mid 1 \leq l \leq 4\right\}, \\
& \cup\left\{x_{t, 4 i-1} y_{t, 3 i-1} \mid 1 \leq i \leq 5\right\} \cup\left\{x_{t, 4 l} y_{t, 3 l+1} \mid 1 \leq l \leq 4\right\} \\
& \cup\left\{y_{t, 3 l} z_{t, l+1} \mid 1 \leq l \leq 4\right\} \cup\left\{w_{t, 15} x_{t, 1}, x_{t, 20} y_{t, 1}, y_{t, 15} z_{t, 1}\right\} .
\end{aligned}
$$

We construct the Buckminsterfullerene-net $H=\operatorname{Amal}\left\{B_{60}^{t}, v \mid 1 \leq t \leq m, m \geq 2\right\}$ by identifying the vertices $v_{t, 1}$ for $1 \leq t \leq m$, into a new vertex, namely v. The vertex set and edge set of H are as follows.

$$
\begin{align*}
V(H)= & \bigcup_{t=1}^{m} V\left(B_{60}^{(t)}\right) \cup\{v\} \backslash\left\{v_{t, 1} \mid 1 \leq t \leq m\right\} \tag{3}\\
E(H)= & \bigcup_{t=1}^{m} E\left(B_{60}^{(t)}\right) \cup\left\{v v_{t, 2}, v v_{t, 5}, v w_{t, 1} \mid 1 \leq t \leq m\right\} \\
& \backslash\left\{v_{t, 1} v_{t, 2}, v_{t, 1} v_{t, 5}, v_{t, 1} w_{t, 1} \mid 1 \leq t \leq m\right\} \tag{4}
\end{align*}
$$

3. The Metric Dimension of \boldsymbol{H}

Simanjuntak et al. [13] gave the lower and upper bounds for the metric dimension of amalgamation of arbitrary connected graphs, as stated in Theorem 3.1.

On metric dimension of ... | L. Yulianti, D. Welyyanti, Yanita, M.R. Fajri, S.W. Saputro

Table 1. The representation of B_{60}

v	$r(v \mid W)$						
v_{1}	$(0,3,5)$	x_{6}	$(4,2,6)$	w_{1}	$(1,2,6)$	y_{1}	$(5,5,7)$
v_{2}	$(1,4,4)$	x_{7}	$(5,3,6)$	w_{2}	$(2,1,7)$	y_{2}	$(5,4,8)$
v_{3}	$(2,4,3)$	x_{8}	$(6,4,5)$	w_{3}	$(3,0,7)$	y_{3}	$(6,4,7)$
v_{4}	$(2,3,4)$	x_{9}	$(5,4,4)$	w_{4}	$(2,1,6)$	y_{4}	$(6,3,7)$
v_{5}	$(1,2,5)$	x_{10}	$(5,5,3)$	w_{5}	$(3,2,5)$	y_{5}	$(6,4,6)$
z_{1}	$(7,6,6)$	x_{11}	$(6,6,2)$	w_{6}	$(4,3,4)$	y_{6}	$(7,5,5)$
z_{2}	$(7,5,6)$	x_{12}	$(6,7,1)$	w_{7}	$(3,4,3)$	y_{7}	$(7,5,4)$
z_{3}	$(8,6,5)$	x_{13}	$(5,7,0)$	w_{8}	$(4,5,2)$	y_{8}	$(7,6,3)$
z_{4}	(9, 7,4)	x_{14}	$(5,7,1)$	w_{9}	$(4,6,1)$	y_{9}	$(8,7,3)$
z_{5}	$(8,7,5)$	x_{15}	$(6,8,2)$	w_{10}	$(3,5,2)$	y_{10}	$(7,8,2)$
x_{1}	$(3,3,7)$	x_{16}	$(5,7,3)$	w_{11}	$(4,6,2)$	y_{11}	$(7,9,3)$
x_{2}	$(3,2,8)$	x_{17}	$(4,6,4)$	w_{12}	$(3,6,3)$	y_{12}	$(7,8,4)$
x_{3}	$(4,3,9)$	x_{18}	$(4,5,5)$	w_{13}	$(2,5,4)$	y_{13}	$(6,7,4)$
x_{4}	$(5,2,8)$	x_{19}	$(5,5,6)$	w_{14}	$(3,4,5)$	y_{14}	$(6,6,5)$
x_{5}	$(4,1,7)$	x_{20}	$(4,4,7)$	w_{15}	$(2,3,6)$	y_{15}	$(6,6,6)$

Theorem 3.1. [13] For $m \in \mathbb{N}, m \geq 2$, let $\left\{G_{1}, G_{2}, \cdots, G_{m}\right\}$ be the collection of nontrivial arbitrary connected graphs, and each G_{t} has a terminal vertex $v_{t, 1}$, for $1 \leq t \leq m$. Denote v as the new vertex coming from identifying all of the terminal vertices. If $G:=\operatorname{Amal}\left\{G_{1}, G_{2}, \cdots, G_{m}, v\right\}$ then:

$$
\begin{equation*}
\sum_{t=1}^{m} \operatorname{dim}\left(G_{t}\right)-m \leq \operatorname{dim}(G) \leq \sum_{i=t}^{m} \operatorname{dim}\left(G_{t}\right)+m-1 \tag{5}
\end{equation*}
$$

The definition of a near-distance basis of a graph is given in Definition 3.1, while in Lemma 3.1 we use the concept of a near-distance basis on the Buckminsterfullerene graph B_{60}.

Definition 3.1. Let W be a basis of B_{60} and $v \in W$. A basis W is called a near-distance basis of v iffor every $u \in N(v)$, there exists $w \in W$ such that $d(u, w) \leq d(v, w)$.

Lemma 3.1. The graph B_{60} has a near-distance basis of v_{1}.
Proof. Putri et al. [9] have shown that $\operatorname{dim}\left(B_{60}\right)=3$. We will provide a basis of B_{60} containing v_{1} and near-distance to a vertex v_{1}. Define $W=\left\{v_{1}, w_{3}, x_{13}\right\}$. The metric representation of every vertex of B_{60} can be seen in the Table 1. Since the metric representation of all vertices are different, then W is the resolving set of B_{60}. Now, let us consider the vertex v_{1}. Note that $N\left(v_{1}\right)=$ $\left\{v_{2}, v_{5}, w_{1}\right\}$ and we have $d\left(v_{2}, x_{13}\right)<d\left(v_{2}, v_{1}\right)$ and for $u \in\left\{v_{5}, w_{1}\right\}, d\left(u, w_{3}\right)<d\left(u, v_{1}\right)$. Thus, the set W is a near-distance basis of v_{1}.

Next, we determine the metric dimension of Buckminsterfullerene-net $H=\operatorname{Amal}\left\{B_{60}^{t}, v \mid 1 \leq\right.$ $t \leq m, m \geq 2\}$ in Theorem 3.2.

On metric dimension of ... | L. Yulianti, D. Welyyanti, Yanita, M.R. Fajri, S.W. Saputro

Theorem 3.2. Let $v \in\left\{v_{t, 1}, v_{t, 2}, v_{t, 3}, v_{t, 4}, v_{t, 5}\right\}$ of B_{60}^{t} for $1 \leq t \leq m$ and $m \geq 2$. Let $H=$ $\operatorname{Amal}\left\{B_{60}^{t}, v \mid 1 \leq t \leq m, m \geq 2\right\}$. Then $\operatorname{dim}(H)=2 m$.

Proof. Without loss of generality, let $c=v_{t, 1}$ be the terminal vertices of H for $1 \leq t \leq m$ and $m \geq 2$. The vertex and edge sets of H are defined in (3) and (4).

For the upper bound of the metric dimension of H, define $W_{1}=\left\{v_{t, 2}, x_{t, 9} \mid 1 \leq t \leq m\right\}$. For $1 \leq t \leq m$, the metric representations of every vertex of H with respect to W_{1} are given in Table 2. Because all vertices have different metric representations, then W_{1} is the resolving set of H. Therefore, $\operatorname{dim}(H) \leq 2 m$.

Next, we assume that $\operatorname{dim}(H)=2 m-1$, and W^{*} is the resolving set of H on $2 m-1$ vertices. Consider the following cases.
(1) Let $c \notin W^{*}$.

At least one of the subgraphs $B_{60}^{t}, 1 \leq t \leq m$, contains a maximum of one member of W^{*}. Without loss of generality, assume that B_{60}^{1} is the subgraph that contains a maximum of one member of W^{*}. Define W_{1}^{*} as the resolving set of B_{60}^{1}, where $\left|W_{1}^{*}\right| \leq 1$ and $W_{1}^{*} \subseteq W^{*}$. Note that every $\left(v_{a}, v_{b}\right)$-path in H always goes through the point c, where $v_{a} \in V\left(B_{60}^{1}\right)$ and $v_{b} \in V\left(H \backslash\left\{B_{60}^{1}\right\}\right)$. Define a vertex set

$$
D_{6}=\left\{w_{1,6}, w_{1,8}, w_{1,9}, w_{1,11}, x_{1,3}, x_{1,5}, x_{1,6}, x_{1,17}, x_{1,18}, w_{1,20}\right\}
$$

where $d(u, c)=5$, for all $u \in D_{6}$. Since $\left|D_{6}\right|=10>\operatorname{diam}\left(B_{60}^{1}\right)=9$, then $\left|W_{1}^{*}\right| \geq 2$. This contradicts the assumption that $\left|W_{1}^{*}\right| \leq 1$.
(2) Let $c \in W^{*}$.

At least one of the subgraphs $B_{60}^{t}, 1 \leq t \leq m$, contains a maximum of two members of W^{*}. Without loss of generality, assume that B_{60}^{2} is the subgraph that contains a maximum of two members of W_{1}^{*}. Define W_{2}^{*} as the resolving set of B_{60}^{2}, where $\left|W_{2}^{*}\right| \leq 2$ and $W_{2}^{*} \subseteq W_{1}^{*}$. Define the vertex set

$$
D_{5}=\left\{x_{2,4}, x_{2,7}, x_{2,9}, x_{2,10}, x_{2.13}, x_{2.14}, x_{2,16}, x_{2,19}, y_{2,1}, y_{2,2}\right\},
$$

where $d(v, c)=5$, for all $v \in D_{5}$. Since $c \in W_{1}^{*}$ and $\left|D_{5}\right|=10>\operatorname{diam}\left(B_{60}^{1}\right)=9$, then $\left|W_{2}^{*}\right| \geq 3$. This contradicts the assumption that $\left|W_{2}^{*}\right| \leq 2$.

From these cases, we have that $\operatorname{dim}(H) \geq 2 m$. It is easy to show that $\operatorname{dim}(H)$ fulfills the bounds in (5) in Theorem 3.1.

Graph $H=\operatorname{Amal}\left\{B_{60}^{t}, v \mid 1 \leq t \leq m, m \geq 2\right\}$ and its metric dimension for $m=3$ is given in Figure 2.

4. Conclusion

In this paper, we have determined that the metric dimension of the Buckminsterfullerene-net graph $H=\operatorname{Amal}\left\{B_{60}^{t}, v \mid 1 \leq t \leq m, m \geq 2\right\}$ is $2 m$.

Table 2. The representation of $H=\operatorname{Amal}\left\{B_{60}^{t}, v \mid 1 \leq t \leq m, m \geq 2\right\}$

v	$r(v \mid W)$	v	$r(v \mid W)$
c	$(\underbrace{1,5, \cdots, 1,5}_{2 m})$	$z_{t, 1}$	$(\underbrace{8,12, \cdots, 8,12}_{2(t-1)}, 7,6, \underbrace{8,12, \cdots, 8,12}_{2(m-t)})$
$v_{t, 2}$	$(\underbrace{2,6, \cdots, 2,6}_{2(t-1)}, 0,5, \underbrace{2,6, \cdots, 0,6}_{2(m-t)})$	$z_{t, 2}$	$(\underbrace{8,12, \cdots, 8,12}_{2(t-1)}, 8,5, \underbrace{8,12, \cdots, 8,12}_{2(m-t)})$
$v_{t, 3}$	$(\underbrace{3,7, \cdots, 3,7}_{2(t-1)}, 1,4, \underbrace{3,7, \cdots, 3,7}_{2(m-t)})$	$z_{t, 3}$	$(\underbrace{9,13, \cdots, 9,13}_{2(t-1)}, 9,4, \underbrace{9,13, \cdots, 9,13}_{2(m-t)}),$
$v_{t, 4}$	$(\underbrace{3,7, \cdots, 3,7}_{2(t-1)}, 2,3, \underbrace{3,7, \cdots, 3,7}_{2(m-t)})$	$z_{t, 4}$	$(\underbrace{10,14, \cdots, 10,14}_{2(t-1)}, 8,5, \underbrace{10,14, \cdots, 10,14}_{2(m-t)}),$
$v_{t, 5}$	$(\underbrace{2,6, \cdots, 2,6}_{2(t-1)}, 2,4, \underbrace{2,6, \cdots, 2,6}_{2(m-t)})$	$z_{t, 5}$	$(\underbrace{9,13, \cdots, 9,13}_{2(t-1)}, 7,6, \underbrace{9,13, \cdots, 9,13}_{2(m-t)})$
$x_{t, 1}$	$(\underbrace{4,8, \cdots, 4,8}_{2(t-1)}, 4,7, \underbrace{4,8, \cdots, 4,8}_{2(m-t)})$	$x_{t, 11}$	$(\underbrace{7,11, \cdots, 7,11}_{2(t-1)}, 6,2, \underbrace{7,11, \cdots, 7,11}_{2(m-t)}),$
$x_{t, 2}$	$(\underbrace{4,8, \cdots, 4,8}_{2(t-1)}, 4,6, \underbrace{4,8, \cdots, 4,8}_{2(m-t)})$	$x_{t, 12}$	$(\underbrace{7,11, \cdots, 7,11}_{2(t-1)}, 5,3, \underbrace{7,11, \cdots, 7,11}_{2(m-t)}),$
$x_{t, 3}$	$(\underbrace{5,9, \cdots, 5,9}_{2(t-1)}, 5,6, \underbrace{5,9, \cdots, 5,9}_{2(m-t)})$	$x_{t, 13}$	$(\underbrace{6,10, \cdots, 6,10}_{2(t-1)}, 4,4, \underbrace{6,10, \cdots, 6,10}_{2(m-t)}),$
$x_{t, 4}$	$(\underbrace{6,10, \cdots, 6,10}_{2(t-1)}, 6,5, \underbrace{6,10, \cdots, 6,10}_{2(m-t)})$	$x_{t, 14}$	$(\underbrace{6,10, \cdots, 6,10}_{2(t-1)}, 4,5, \underbrace{6,10, \cdots, 6,10}_{2(m-t)}),$
$x_{t, 5}$	$(\underbrace{5,9, \cdots, 5,9}_{2(t-1)}, 5,4, \underbrace{5,9, \cdots, 5,9}_{2(m-t)})$	$x_{t, 15}$	$(\underbrace{7,11, \cdots, 7,11}_{2(t-1}, 5,6, \underbrace{7,11, \cdots, 7,11}_{2(m-t}),$
$x_{t, 6}$	$(\underbrace{5,9, \cdots, 5,9}_{2(t-1)}, 5,3, \underbrace{5,9, \cdots, 5,9}_{2(m-t)})$	$x_{t, 16}$	$(\underbrace{6,10, \cdots, 6,10}_{2(t-1}, 4,7, \underbrace{6,10, \cdots, 6,10}_{2(m-t}),$
$x_{t, 7}$	$(\underbrace{6,10, \cdots, 6,10}_{2(t-1)}, 6,2, \underbrace{6,10, \cdots, 6,10}_{2(m-t)})$	$x_{t, 17}$	$(\underbrace{5,9, \cdots, 5,9}_{2(t-1)}, 3,7, \underbrace{5,9, \cdots, 5,9}_{2(m-t)})$
$x_{t, 8}$	$(\underbrace{7,11, \cdots, 7,11}_{2(t-1)}, 6,1, \underbrace{7,11, \cdots, 7,11}_{2(m-t)})$	$x_{t, 18}$	$(\underbrace{5,9, \cdots, 5,9}_{2(t-1}), 3,8, \underbrace{5,9, \cdots, 5,9}_{2(m-t})),$
$x_{t, 9}$	$(\underbrace{6,10, \cdots, 6,10}_{2(t-1)}, 5,0, \underbrace{6,10, \cdots, 6,10}_{2(m-t)})$	$x_{t, 19}$	$(\underbrace{6,10, \cdots, 6,10}_{2(t-1)}, 4,9, \underbrace{6,10, \cdots, 6,10}_{2(m-t)}),$
$x_{t, 10}$	$(\underbrace{6,10, \cdots, 6,10}_{2(t-1)}, 5,1, \underbrace{6,10, \cdots, 6,10}_{2(m-t)})$	$x_{t, 20}$	$(\underbrace{5,9, \cdots, 5,9}_{2(t-1)}, 5,8, \underbrace{5,9, \cdots, 5,9}_{2(m-t)}),$

On metric dimension of ... | L. Yulianti, D. Welyyanti, Yanita, M.R. Fajri, S.W. Saputro

v	$r(v \mid W)$	v	$r(v \mid W)$
$w_{t, 1}$	$(\underbrace{2,6, \cdots, 2,6}_{2(t-1)}, 2,6, \underbrace{2,6, \cdots, 2,6}_{2(m-t)})$	$y_{t, 1}$	$(\underbrace{6,10, \cdots, 6,10}_{2(t-1)}, 6,7, \underbrace{6,10, \cdots, 6,10}_{2(m-t)}),$
$w_{t, 2}$	$(\underbrace{3,7, \cdots, 3,7}_{2(t-1)}, 3,5, \underbrace{3,7, \cdots, 3,7}_{2(m-t)})$	$y_{t, 2}$	$(\underbrace{6,10, \cdots, 6,10}_{2(t-1)}, 6,6, \underbrace{6,10, \cdots, 6,10}_{2(m-t)}),$
$w_{t, 3}$	$(\underbrace{4,8, \cdots, 4,8}_{2(t-1)}, 4,4, \underbrace{4,8, \cdots, 4,8}_{2(m-t)})$	$y_{t, 3}$	$(\underbrace{7,11, \cdots, 7,11}_{2(t-1)}, 7,5, \underbrace{7,11, \cdots, 7,11}_{2(m-t)}),$
$w_{t, 4}$	$(\underbrace{3,7, \cdots, 3,7}_{2(t-1)}, 3,3, \underbrace{3,7, \cdots, 3,7}_{2(m-t)})$	$y_{t, 4}$	$(\underbrace{7,11, \cdots, 7,11}_{2(t-1)}, 7,4, \underbrace{7,11, \cdots, 7,11}_{2(m-t)}),$
$w_{t, 5}$	$(\underbrace{4,8, \cdots, 4,8}_{2(t-1)}, 4,2, \underbrace{4,8, \cdots, 4,8}_{2(m-t)})$	$y_{t, 5}$	$(\underbrace{7,11, \cdots, 7,11}_{2(t-1)}, 7,3, \underbrace{7,11, \cdots, 7,11}_{2(m-t)}),$
$w_{t, 6}$	$(\underbrace{5,9, \cdots, 5,9}_{2(t-1)}, 4,1, \underbrace{5,9, \cdots, 5,9}_{2(m-t)})$	$y_{t, 6}$	$(\underbrace{8,12, \cdots, 8,12}_{2(t-1)}, 8,3, \underbrace{8,12, \cdots, 8,12}_{2(m-t)}),$
$w_{t, 7}$	$(\underbrace{4,8, \cdots, 4,8}_{2(t-1)}, 3,2, \underbrace{4,8, \cdots, 4,8}_{2(m-t)})$	$y_{t, 7}$	$(\underbrace{8,12, \cdots, 8,12}_{2(t-1)}, 7,2, \underbrace{8,12, \cdots, 8,12}_{2(m-t)}),$
$w_{t, 8}$	$(\underbrace{5,9, \cdots, 5,9}_{2(t-1)}, 4,2, \underbrace{5,9, \cdots, 5,9}_{2(m-t)})$	$y_{t, 8}$	$(\underbrace{8,12, \cdots, 8,12}_{2(t-1)}, 7,3, \underbrace{8,12, \cdots, 8,12}_{2(m-t)}),$
$w_{t, 9}$	$(\underbrace{5,9, \cdots, 5,9}_{2(t-1)}, 3,3, \underbrace{5,9, \cdots, 5,9}_{2(m-t)})$	$y_{t, 9}$	$(\underbrace{9,13, \cdots, 9,13}_{2(t-1)}, 7,4, \underbrace{9,13, \cdots, 9,13}_{2(m-t)}),$
$w_{t, 10}$	$(\underbrace{4,8, \cdots, 4,8}_{2(t-1)}, 2,4, \underbrace{4,8, \cdots, 4,8}_{2(m-t)})$	$y_{t, 10}$	$(\underbrace{8,12, \cdots, 8,12}_{2(t-1)}, 6,4, \underbrace{8,12, \cdots, 8,12}_{2(m-t)}),$
$w_{t, 11}$	$(\underbrace{5,9, \cdots, 5,9}_{2(t-1)}, 3,5, \underbrace{5,9, \cdots, 5,9}_{2(m-t)})$	$y_{t, 11}$	$(\underbrace{8,12, \cdots, 8,12}_{2(t-1)}, 6,5, \underbrace{8,12, \cdots, 8,12}_{2(m-t)}),$
$w_{t, 12}$	$(\underbrace{4,8, \cdots, 4,8}_{2(t-1)}, 2,6, \underbrace{4,8, \cdots, 4,8}_{2(m-t)})$	$y_{t, 12}$	$(\underbrace{8,12, \cdots, 8,12}_{2(t-1)}, 6,6, \underbrace{8,12, \cdots, 8,12}_{2(m-t)}),$
$w_{t, 13}$	$(\underbrace{3,7, \cdots, 3,7}_{2(t-1)}, 1,6, \underbrace{3,7, \cdots, 3,7}_{2(m-t)})$	$y_{t, 13}$	$(\underbrace{7,11, \cdots, 7,11}_{2(t-1)}, 5,7, \underbrace{7,11, \cdots, 7,11}_{2(m-t)}),$
$w_{t, 14}$	$(\underbrace{4,8, \cdots, 4,8}_{2(t-1)}, 2,7, \underbrace{4,8, \cdots, 4,8}_{2(m-t)})$	$y_{t, 14}$	$(\underbrace{7,11, \cdots, 7,11}_{2(t-1)}, 5,8, \underbrace{7,11, \cdots, 7,11}_{2(m-t)}),$
$w_{t, 15}$	$(\underbrace{3,7, \cdots, 3,7}_{2(t-1)}, 3,7, \underbrace{3,7, \cdots, 3,7}_{2(m-t)})$	$y_{t, 15}$	$(\underbrace{7,11, \cdots, 7,11}_{2(t-1)}, 6,7, \underbrace{7,11, \cdots, 7,11}_{2(m-t)}),$

Figure 2. $\operatorname{Amal}\left\{B_{60}^{t}, v \mid 1 \leq t \leq 3\right\}$ and $W_{1}=\left\{v_{t, 2}, x_{t, 9} \mid 1 \leq t \leq 3\right\}$

On metric dimension of ... | L. Yulianti, D. Welyyanti, Yanita, M.R. Fajri, S.W. Saputro

5. Acknowledgments

This paper is partially supported by Hibah Riset Dasar FMIPA Universitas Andalas No. 18/UN.16.03.D/PP/FMIPA. 2021.

References

[1] S. Akhter and R. Farooq, Metric Dimension of Fullerene Graph, Electron. J. Graph Theory Appl., 7(1), (2019), 91 - 103.
[2] V. Andova, F. Kardos, and R. Skrekovsi, Fullerene Graphs and Some Relevant Graphs Invariant, in: Topics in Chemical Graph Theory, University of Kragujevac and Faculty of Science, Kragujevac, (2014), 39 - 54, Mathematical Chemistry Monographs, 978-86-6009-027-2.
[3] M. Baĉa, E.T. Baskoro, A.N.M. Salman, S.W. Saputro, and D. Suprijanto, The Metric Dimension of Regular Bipartite Graphs, Bull. Math. Soc. Sci. Math. Roumanie Tome, 54(102) No 1 (2011), $15-28$.
[4] J. Caceres, C. Hernando, M. Mora, I. Pelayo, M. Puertas, and C. Seara, On the metric dimension of some families of graphs, Electron. Notes Discrete Math., 22 (2005), 129 - 133.
[5] G. Chartrand, L. Eroh, M. Johnson, and O. Oellerman, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99 - 113.
[6] R. Diestel, Graph Theory, $5^{\text {th }}$ ed., Springer-Verlag New York Inc., New York, (2017).
[7] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985), 162 - 163.
[8] C. Poisson, and P. Zhang, The metric dimension of unicyclic graphs, J. Combin. Math. Comb. Comput., 40 (2002), 17 - 32.
[9] A.H. Putri, L. Yulianti, and D. Welyyanti, Dimensi Metrik dari graf Buckminsterfullerene (in Bahasa), Jurnal Matematika UNAND, 8(4), (2019), 93-102.
[10] S.W. Saputro, E.T. Baskoro, A.N.M. Salman, and D. Suprijanto, The metric dimension of a complete n-partite graphs and its Cartesian product with a path, J. Combin. Math. Comb. Comput., 71 (2009), 283 - 293.
[11] S.W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun, E.T. Baskoro, A.N.M. Salman, and M. Baĉa, (2013), The metric dimension of the lexicographic product of graphs, Discrete Math, 313(9) (2013), 1045 - 1051.
[12] B. Shanmukha, B. Sooryanarayana, and K.S. Harinath, Metric dimension of wheels, Far East J. Appl. Math., 8(3) (2002), 217 - 229.
[13] R. Simanjuntak, S. Uttunggadewa, and S.W. Saputro, Metric Dimension of Amalgamation of Graphs, Lect. Notes Comput. Sci. (LNCS), 8986 (2015), 330 - 337.

On metric dimension of ... | L. Yulianti, D. Welyyanti, Yanita, M.R. Fajri, S.W. Saputro
[14] B. Sooryanarayana, S. Kunikullaya, and N.N. Swamy, Metric dimension of generalized wheels, Arab J. Math. Sci., 25(2) (2019), 131 - 144.
[15] I. Tomescu and I. Javaid, On the metric dimension of the Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie Tome, 50(98), No 4 (2007), 371 - 376.
[16] L. Yulianti, N. Narwen, and S. Hariyani, A note on the metric dimension of subdivided thorn graphs, Indones. J. Combin., 3(1) (2019), $34-40$.
[17] L. Yulianti, A. Putri, B. Rudianto, Y. Yanita, and D. Welyyanti, On the metric dimension of the triangle-net graph, AIP Conf. Proc., (2022), accepted.

[^0]: Keywords: Buckminsterfullerene, amalgamation, Buckminsterfullerene-net, metric dimension Mathematics Subject Classification : 05C12, 05C15

[^1]: ${ }^{1}$ corresponding author
 Received: 1 December 2022, Revised: 1 November 2023, Accepted: 11 December 2023.

