

On the metric dimension of Buckminsterfullerene-net graph

Lyra Yulianti^{1a}, Des Welyyanti^a, Yanita^a, Muhammad Rafif Fajri^a, Suhadi Wido Saputro^b

^aDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Andalas University Kampus UNAND Limau Manis Padang 25163, Indonesia ^bCombinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

lyra@sci.unand.ac.id

Abstract

The metric dimension of an arbitrary connected graph G, denoted by $\dim(G)$, is the minimum cardinality of the resolving set W of G. An ordered set $W = \{w_1, w_2, \dots, w_k\}$ is a resolving set of G if for all two different vertices in G, their metric representations are different with respect to W. The metric representation of a vertex v with respect to W is defined as k-tuple $r(v|W) = (d(v, w_1), d(v, w_2), \dots, d(v, w_k))$, where $d(v, w_j)$ is the distance between v and w_j for $1 \le j \le k$. The Buckminsterfullerene graph is a 3-reguler graph on 60 vertices containing some cycles C_5 and C_6 . Let B_{60}^t denotes the $t^{th} B_{60}$ for $1 \le t \le m$ and $m \ge 2$. Let v_t be a terminal vertex for each B_{60}^t . The Buckminsterfullerene-net, denoted by $H := Amal\{B_{60}^t, v|1 \le t \le m; m \ge 2\}$ is a graph constructed from the identification of all terminal vertices v_t , for $1 \le t \le m$ and $m \ge 2$, into a new vertex, denoted by v. This paper will determine the metric dimension of the Buckminsterfullerene-net graph H.

Keywords: Buckminsterfullerene, amalgamation, Buckminsterfullerene-net, metric dimension Mathematics Subject Classification : 05C12, 05C15

¹corresponding author

Received: 1 December 2022, Revised: 1 November 2023, Accepted: 11 December 2023.

1. Introduction

Let G = (V, E) be a simple, finite and undirected graph, where V = V(G) and E = E(G)are the vertex-set and the edge-set of G, respectively. The distance between two arbitrary vertices u, v in G, denoted by d(u, v), is the length of the shortest path between them. Let W be an ordered subset of V. The metric representation of some vertex $v \in V(G)$ with respect to W is defined as k-vector $r(v \mid W) = (d(v, w_1), d(v, w_2), \dots, d(v, w_k))$. If $r(u \mid W) \neq r(v \mid W)$ for every two vertices u, v in G, then W is called the resolving set of G. The minimum cardinality of Wis defined as the metric dimension of G, denoted by $\dim(G)$ [5]. Other graph terminologies and notations are taken from [6].

The fundamental results regarding the metric dimension of a graph are given by Chartrand *et al.* [5]. They stated the characterizations of some connected graph G with $\dim(G) = 1$, $\dim(G) = n - 1$ or $\dim(G) = n - 2$, and determined the metric dimension of cycle C_n and an arbitrary tree T. Another significant results are the metric dimension of regular bipartite graphs [3], fan F_n [4], unicyclic graphs [8], *n*-partite complete graphs [10], the lexicographic product of graphs [11], wheels, generalized wheel [14] and Jahangir graph [15]. Next, Yulianti *et al.* [16] determined the metric dimension of thorn-subdivided graph TD(G) of an arbitrary connected graph G on n vertices. Recent result is the metric dimension of the triangle-net graph by Yulianti *et al.* in [17].

Akhter *et al.* [1] stated that the Fullerene molecule discovered by Kroto *et al.* [7] can be represented as a Fullerene graph. In the same paper, they considered the metric dimension of (3, 6)-Fullerene and (4, 6)-Fullerene, where (k, 6)-Fullerene is a planar 3-connected graph containing cycles on k and 6 vertices. The Buckminsterfullerene graph, denoted by B_{60} , is one of the (5, 6)-Fullerene on 60 vertices. The definition of B_{60} was taken from Andova *et al.* [2].

Putri *et al.* [9] stated that the metric dimension of the Buckminsterfullerene graph B_{60} is three. Using this result, we constructed the Buckminsterfullerene-net graph as follows. Denote B_{60}^t as the t^{th} Buckminsterfullerene graph B_{60} for $1 \le t \le m$ and $m \ge 2$; and define v_t as the terminal vertex for every B_{60}^t . The Buckminsterfullerene-net, denoted by $H := Amal\{B_{60}^t, v | 1 \le t \le m; m \ge 2\}$ is a graph constructed from the identification of all terminal vertices v_t , for $1 \le t \le m$ and $m \ge 2$, into a new vertex, denoted by v. In this paper we determine the metric dimension of the Buckminsterfullerene-net graph H.

2. The Buckminsterfullerene-net Graph

Putri *et al.* [9] gave the vertex set and the edge set of B_{60} as follows.

$$V(B_{60}) = \{v_i, z_i \mid 1 \le i \le 5\} \cup \{w_j, y_j \mid 1 \le j \le 15\} \cup \{x_k \mid 1 \le k \le 20\},$$
(1)

$$E(B_{60}) = \{v_l v_{l+1}, z_l z_{l+1} \mid 1 \le l \le 4\} \cup \{w_m w_{m+1}, y_m y_{m+1} \mid 1 \le m \le 14\}$$

$$\cup \{x_k x_{k+1} \mid 1 \le k \le 19\} \cup \{v_1 v_5, z_1 z_5, w_1 w_{15}, y_1 y_{15}, x_1 x_{20}\}$$

$$\cup \{v_i w_{3i-2}, w_{3i-1} x_{4i-2}, x_{4i-1} y_{3i-1} \mid 1 \le i \le 5\}$$

$$\cup \{w_{3l} x_{4l+1}, x_{4l} y_{3l+1}, y_{3l} z_{l+1} \mid 1 \le l \le 4\}$$

$$\cup \{w_{15} x_1, x_{20} y_1, y_{15}, z_1\}.$$
(2)

The Buckminsterfullerene graph B_{60} is given in Figure 1.

Figure 1. [9] The Buckminsterfullerene graph B_{60}

Let t be a positive integer, $1 \le t \le m$, and $m \ge 2$. Denote $B_{60}^{(t)}$ as the t^{th} Buckminsterfullerene. The vertex set and the edge set of $B_{60}^{(t)}$ are defined similarly as in (1) and (2).

$$\begin{split} V(B_{60}^{(t)}) &= \{ v_{t,i}, z_{t,i} \mid 1 \le i \le 5 \} \cup \{ w_{t,j}, y_{t,j} \mid 1 \le j \le 15 \} \cup \{ x_{t,k} \mid 1 \le k \le 20 \}, \\ E(B_{60}^{(t)}) &= \{ v_{t,l}v_{t,l+1}, z_{t,l}z_{t,l+1} \mid 1 \le l \le 4 \} \cup \{ w_{t,m}w_{t,m+1}, y_{t,m}y_{t,m+1} \mid 1 \le m \le 14 \}, \\ &\cup \{ x_{t,n}x_{t,n+1} \mid 1 \le n \le 19 \} \cup \{ v_{t,1}v_{t,5}, z_{t,1}z_{t,5}, w_{t,1}w_{t,15}, y_{t,1}y_{t,15}, x_{t,1}x_{t,20} \}, \\ &\cup \{ v_{t,i}w_{t,3i-2} \mid 1 \le i \le 5 \} \cup \{ w_{t,3i-1}x_{t,4i-2} \mid 1 \le i \le 5 \} \cup \{ w_{t,3l}x_{t,4l+1} \mid 1 \le l \le 4 \} \\ &\cup \{ x_{t,4i-1}y_{t,3i-1} \mid 1 \le i \le 5 \} \cup \{ x_{t,4l}y_{t,3l+1} \mid 1 \le l \le 4 \} \\ &\cup \{ y_{t,3l}z_{t,l+1} \mid 1 \le l \le 4 \} \cup \{ w_{t,15}x_{t,1}, x_{t,20}y_{t,1}, y_{t,15}z_{t,1} \}. \end{split}$$

We construct the Buckminsterfullerene-net $H = Amal\{B_{60}^t, v | 1 \le t \le m, m \ge 2\}$ by identifying the vertices $v_{t,1}$ for $1 \le t \le m$, into a new vertex, namely v. The vertex set and edge set of H are as follows.

$$V(H) = \bigcup_{t=1}^{m} V(B_{60}^{(t)}) \cup \{v\} \setminus \{v_{t,1} \mid 1 \le t \le m\},$$

$$E(H) = \bigcup_{t=1}^{m} E(B_{60}^{(t)}) \cup \{vv_{t,2}, vv_{t,5}, vw_{t,1} \mid 1 \le t \le m\}$$

$$\setminus \{v_{t,1}v_{t,2}, v_{t,1}v_{t,5}, v_{t,1}w_{t,1} \mid 1 \le t \le m\}.$$
(3)

3. The Metric Dimension of H

Simanjuntak *et al.* [13] gave the lower and upper bounds for the metric dimension of amalgamation of arbitrary connected graphs, as stated in Theorem 3.1.

v	$r(v \mid W)$	v	$r(v \mid W)$	v	$r(v \mid W)$	v	$r(v \mid W)$
v_1	(0,3,5)	x_6	(4, 2, 6)	w_1	(1, 2, 6)	y_1	(5, 5, 7)
v_2	(1, 4, 4)	x_7	(5, 3, 6)	w_2	(2, 1, 7)	y_2	(5, 4, 8)
v_3	(2, 4, 3)	x_8	(6, 4, 5)	w_3	(3, 0, 7)	y_3	(6, 4, 7)
v_4	(2, 3, 4)	x_9	(5, 4, 4)	w_4	(2, 1, 6)	y_4	(6, 3, 7)
v_5	(1, 2, 5)	x_{10}	(5,5,3)	w_5	(3, 2, 5)	y_5	(6, 4, 6)
z_1	(7, 6, 6)	x_{11}	(6, 6, 2)	w_6	(4, 3, 4)	y_6	(7, 5, 5)
z_2	(7, 5, 6)	x_{12}	(6, 7, 1)	w_7	(3, 4, 3)	y_7	(7, 5, 4)
z_3	(8,6,5)	x_{13}	(5, 7, 0)	w_8	(4, 5, 2)	y_8	(7, 6, 3)
z_4	(9, 7, 4)	x_{14}	(5, 7, 1)	w_9	(4, 6, 1)	y_9	(8, 7, 3)
z_5	(8, 7, 5)	x_{15}	(6, 8, 2)	w_{10}	(3, 5, 2)	y_{10}	(7, 8, 2)
x_1	(3,3,7)	x_{16}	(5,7,3)	w_{11}	(4, 6, 2)	y_{11}	(7, 9, 3)
x_2	(3, 2, 8)	x_{17}	(4, 6, 4)	w_{12}	(3, 6, 3)	y_{12}	(7, 8, 4)
x_3	(4, 3, 9)	x_{18}	(4, 5, 5)	w_{13}	(2, 5, 4)	y_{13}	(6, 7, 4)
x_4	(5, 2, 8)	x_{19}	(5, 5, 6)	w_{14}	(3, 4, 5)	y_{14}	(6, 6, 5)
x_5	(4, 1, 7)	x_{20}	(4, 4, 7)	w_{15}	(2, 3, 6)	y_{15}	(6, 6, 6)

Table 1. The representation of B_{60}

Theorem 3.1. [13] For $m \in \mathbb{N}$, $m \ge 2$, let $\{G_1, G_2, \dots, G_m\}$ be the collection of nontrivial arbitrary connected graphs, and each G_t has a terminal vertex $v_{t,1}$, for $1 \le t \le m$. Denote v as the new vertex coming from identifying all of the terminal vertices. If $G := Amal\{G_1, G_2, \dots, G_m, v\}$ then:

$$\sum_{t=1}^{m} \dim(G_t) - m \le \dim(G) \le \sum_{i=t}^{m} \dim(G_t) + m - 1.$$
(5)

The definition of a near-distance basis of a graph is given in Definition 3.1, while in Lemma 3.1 we use the concept of a near-distance basis on the Buckminsterfullerene graph B_{60} .

Definition 3.1. Let W be a basis of B_{60} and $v \in W$. A basis W is called a near-distance basis of v if for every $u \in N(v)$, there exists $w \in W$ such that $d(u, w) \leq d(v, w)$.

Lemma 3.1. The graph B_{60} has a near-distance basis of v_1 .

Proof. Putri *et al.* [9] have shown that $\dim(B_{60}) = 3$. We will provide a basis of B_{60} containing v_1 and near-distance to a vertex v_1 . Define $W = \{v_1, w_3, x_{13}\}$. The metric representation of every vertex of B_{60} can be seen in the Table 1. Since the metric representation of all vertices are different, then W is the resolving set of B_{60} . Now, let us consider the vertex v_1 . Note that $N(v_1) = \{v_2, v_5, w_1\}$ and we have $d(v_2, x_{13}) < d(v_2, v_1)$ and for $u \in \{v_5, w_1\}$, $d(u, w_3) < d(u, v_1)$. Thus, the set W is a near-distance basis of v_1 .

Next, we determine the metric dimension of Buckminsterful lerene-net $H = Amal\{B_{60}^t, v | 1 \le t \le m, m \ge 2\}$ in Theorem 3.2. **Theorem 3.2.** Let $v \in \{v_{t,1}, v_{t,2}, v_{t,3}, v_{t,4}, v_{t,5}\}$ of B_{60}^t for $1 \le t \le m$ and $m \ge 2$. Let $H = Amal\{B_{60}^t, v \mid 1 \le t \le m, m \ge 2\}$. Then $\dim(H) = 2m$.

Proof. Without loss of generality, let $c = v_{t,1}$ be the terminal vertices of H for $1 \le t \le m$ and $m \ge 2$. The vertex and edge sets of H are defined in (3) and (4).

For the upper bound of the metric dimension of H, define $W_1 = \{v_{t,2}, x_{t,9} \mid 1 \le t \le m\}$. For $1 \le t \le m$, the metric representations of every vertex of H with respect to W_1 are given in Table 2. Because all vertices have different metric representations, then W_1 is the resolving set of H. Therefore, $dim(H) \le 2m$.

Next, we assume that $\dim(H) = 2m - 1$, and W^* is the resolving set of H on 2m - 1 vertices. Consider the following cases.

(1) Let $c \notin W^*$.

At least one of the subgraphs B_{60}^t , $1 \le t \le m$, contains a maximum of one member of W^* . Without loss of generality, assume that B_{60}^1 is the subgraph that contains a maximum of one member of W^* . Define W_1^* as the resolving set of B_{60}^1 , where $|W_1^*| \le 1$ and $W_1^* \subseteq W^*$. Note that every (v_a, v_b) -path in H always goes through the point c, where $v_a \in V(B_{60}^1)$ and $v_b \in V(H \setminus \{B_{60}^1\})$. Define a vertex set

$$D_6 = \{w_{1,6}, w_{1,8}, w_{1,9}, w_{1,11}, x_{1,3}, x_{1,5}, x_{1,6}, x_{1,17}, x_{1,18}, w_{1,20}\},\$$

where d(u, c) = 5, for all $u \in D_6$. Since $|D_6| = 10 > diam(B_{60}^1) = 9$, then $|W_1^*| \ge 2$. This contradicts the assumption that $|W_1^*| \le 1$.

(2) Let $c \in W^*$.

At least one of the subgraphs B_{60}^t , $1 \le t \le m$, contains a maximum of two members of W^* . Without loss of generality, assume that B_{60}^2 is the subgraph that contains a maximum of two members of W_1^* . Define W_2^* as the resolving set of B_{60}^2 , where $|W_2^*| \le 2$ and $W_2^* \subseteq W_1^*$. Define the vertex set

$$D_5 = \{x_{2,4}, x_{2,7}, x_{2,9}, x_{2,10}, x_{2,13}, x_{2,14}, x_{2,16}, x_{2,19}, y_{2,1}, y_{2,2}\},\$$

where d(v,c) = 5, for all $v \in D_5$. Since $c \in W_1^*$ and $|D_5| = 10 > diam(B_{60}^1) = 9$, then $|W_2^*| \ge 3$. This contradicts the assumption that $|W_2^*| \le 2$.

From these cases, we have that $dim(H) \ge 2m$. It is easy to show that dim(H) fulfills the bounds in (5) in Theorem 3.1.

Graph $H = Amal\{B_{60}^t, v \mid 1 \le t \le m, m \ge 2\}$ and its metric dimension for m = 3 is given in Figure 2.

4. Conclusion

In this paper, we have determined that the metric dimension of the Buckminsterfullerene-net graph $H = Amal\{B_{60}^t, v \mid 1 \le t \le m, m \ge 2\}$ is 2m.

v	$r(v \mid W)$	v	$r(v \mid W)$
c	$(1,5,\cdots,1,5)$	$z_{t,1}$	$(8, 12, \cdots, 8, 12, 7, 6, 8, 12, \cdots, 8, 12),$
	2m		$2(t-1) \qquad \qquad 2(m-t)$
$v_{t,2}$	$(2, 6, \cdots, 2, 6, 0, 5, 2, 6, \cdots, 0, 6)$	$z_{t,2}$	$(\underline{8, 12, \cdots, 8, 12}, \underline{8, 5}, \underline{8, 12, \cdots, 8, 12}),$
	$2(t-1) \qquad \qquad 2(m-t)$		2(t-1) $2(m-t)$
$v_{t,3}$	$(\underbrace{3,7,\cdots,3,7},1,4,\underbrace{3,7,\cdots,3,7})$	$z_{t,3}$	$(9, 13, \cdots, 9, 13, 9, 4, 9, 13, \cdots, 9, 13),$
	2(t-1) $2(m-t)$		2(t-1) $2(m-t)$
$v_{t,4}$	$(\underbrace{3,7,\cdots,3,7}_{2,3,3,7,\cdots,3,7})$	$z_{t,4}$	$(\underbrace{10, 14, \cdots, 10, 14}_{0, 14}, 8, 5, \underbrace{10, 14, \cdots, 10, 14}_{0, 14}),$
	2(t-1) $2(m-t)$		2(t-1) $2(m-t)$
$v_{t,5}$	$(2, 6, \cdots, 2, 6, 2, 4, 2, 6, \cdots, 2, 6)$	$z_{t,5}$	$(\underline{9, 13, \cdots, 9, 13}, 7, 6, \underline{9, 13, \cdots, 9, 13})$
	2(t-1) $2(m-t)$		2(t-1) $2(m-t)$
$x_{t,1}$	$(\underbrace{4, 8, \cdots, 4, 8}_{4, 7, 4, 8, \cdots, 4, 8})$	$x_{t,11}$	$(\underline{7,11,\cdots,7,11}, 6, 2, \underline{7,11,\cdots,7,11}),$
	2(t-1) $2(m-t)$		2(t-1) $2(m-t)$
$x_{t,2}$	$(\underbrace{4, 8, \cdots, 4, 8}_{4, 8, 4, 6, 4, 8, \cdots, 4, 8})$	$x_{t,12}$	$(\underline{7,11,\cdots,7,11},5,3,\underline{7,11,\cdots,7,11}),$
	2(t-1) $2(m-t)$		2(t-1) $2(m-t)$
$x_{t,3}$	$(\underbrace{5,9,\cdots,5,9}_{},5,6,\underbrace{5,9,\cdots,5,9}_{})$	$x_{t,13}$	$(\underline{6, 10, \cdots, 6, 10}, 4, 4, \underline{6, 10, \cdots, 6, 10}),$
	2(t-1) $2(m-t)$		2(t-1) $2(m-t)$
$x_{t,4}$	$(\underline{6, 10, \cdots, 6, 10}, 6, 5, \underline{6, 10, \cdots, 6, 10})$	$x_{t,14}$	$(\underline{6, 10, \cdots, 6, 10}, 4, 5, \underline{6, 10, \cdots, 6, 10}),$
	$2(t-1) \qquad 2(m-t)$		2(t-1) $2(m-t)$
$x_{t,5}$	$(5, 9, \dots, 5, 9, 5, 4, 5, 9, \dots, 5, 9)$	$x_{t,15}$	$(\underline{7,11,\cdots,7,11},5,6,\underline{7,11,\cdots,7,11}),$
	$2(t-1) \qquad 2(m-t) \qquad (7-2)$		2(t-1) $2(m-t)$ $2(m-t)$
$x_{t,6}$	$(\underbrace{5,9,\cdots,5,9}_{,,5,3,5,9,\cdots,5,9})$	$x_{t,16}$	$(\underbrace{6, 10, \cdots, 6, 10}_{4, 7, 6, 10, \cdots, 6, 10}, 4, 7, \underbrace{6, 10, \cdots, 6, 10}_{6, 10, \cdots, 6, 10}),$
	2(t-1) $2(m-t)$		2(t-1) $2(m-t)$
$x_{t,7}$	$(\underline{6, 10, \cdots, 6, 10}, 6, 2, \underline{6, 10, \cdots, 6, 10})$	$x_{t,17}$	$(\underbrace{5,9,\cdots,5,9}_{},3,7,\underbrace{5,9,\cdots,5,9}_{}),$
	2(t-1) $2(m-t)$		2(t-1) $2(m-t)$
$x_{t,8}$	$(\underline{7,11,\cdots,7,11},6,1,\underline{7,11,\cdots,7,11})$	$x_{t,18}$	$(\underbrace{5,9,\cdots,5,9}_{0}),3,8,\underbrace{5,9,\cdots,5,9}_{0})),$
	2(t-1) $2(m-t)$		2(t-1) $2(m-t)$
$x_{t,9}$	$(\underline{6, 10, \cdots, 6, 10}, 5, 0, \underline{6, 10, \cdots, 6, 10})$	$x_{t,19}$	$(\underline{6, 10, \cdots, 6, 10}, 4, 9, \underline{6, 10, \cdots, 6, 10}),$
	$2(t-1) \qquad \qquad \overbrace{2(m-t)}^{2(m-t)}$		$2(t-1) \qquad \qquad \overbrace{2(m-t)}^{2(m-t)}$
$x_{t,10}$	$(6, 10, \cdots, 6, 10, 5, 1, 6, 10, \cdots, 6, 10)$	$x_{t,20}$	$(5,9,\cdots,5,9,5,8,5,9,\cdots,5,9),$
	$2(t-1) \qquad \qquad 2(m-t)$		$2(t-1) \qquad \qquad 2(m-t)$

Table 2. The representation of $H = Amal\{B_{60}^t, v | 1 \leq t \leq m, m \geq 2\}$

v	$r(v \mid W)$	v	$r(v \mid W)$
$w_{t,1}$	$(2, 6, \cdots, 2, 6, 2, 6, 2, 6, \cdots, 2, 6)$	$y_{t,1}$	$(\underline{6}, 10, \cdots, \underline{6}, \underline{10}, 6, 7, \underline{6}, 10, \cdots, \underline{6}, \underline{10}),$
	$2(t-1) \qquad \qquad 2(m-t) \qquad \qquad$		$2(t-1) \qquad \qquad 2(m-t)$
$w_{t,2}$	$(\underbrace{3,7,\cdots,3,7},3,5,\underbrace{3,7,\cdots,3,7})$	$y_{t,2}$	$(\underline{6, 10, \cdots, 6, 10}, 6, 6, \underline{6, 10, \cdots, 6, 10}),$
	$2(t-1) \qquad 2(m-t)$		2(t-1) $2(m-t)(7 11 7 11 7 5 7 11 7 11)$
$w_{t,3}$	$(4, 8, \cdots, 4, 8, 4, 4, 4, 8, \cdots, 4, 8)$	$y_{t,3}$	$(\underbrace{(1,11,\cdots,(1,11)}_{1,11},1,5,\underbrace{(1,11,\cdots,(1,11)}_{1,11}),$
111	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>11</i>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$w_{t,4}$	$(\underbrace{3, 1, \cdots, 3, 1}_{2(4, 1)}, 3, 5, \underbrace{3, 1, \cdots, 3, 1}_{2(4, 1)})$	$g_{t,4}$	
$w_{t,5}$	$(4, 8, \cdots, 4, 8, 4, 2, 4, 8, \cdots, 4, 8)$	$y_{t,5}$	$(7,11,\cdots,7,11,7,3,7,11,\cdots,7,11),$
	$\underbrace{2(t-1)}_{2(m-t)}$		$\underbrace{2(t-1)}_{2(m-t)}$
$w_{t,6}$	$(5, 9, \cdots, 5, 9, 4, 1, 5, 9, \cdots, 5, 9)$	$y_{t,6}$	$(8, 12, \cdots, 8, 12, 8, 3, 8, 12, \cdots, 8, 12),$
	2(t-1) $2(m-t)$		2(t-1) $2(m-t)$
$w_{t,7}$	$(\underbrace{4,8,\cdots,4,8},3,2,\underbrace{4,8,\cdots,4,8})$	$y_{t,7}$	$(\underbrace{8, 12, \cdots, 8, 12}_{0, 7, 2, 9}, \underbrace{7, 2, \underbrace{8, 12, \cdots, 8, 12}_{0, 7, 9}),$
	2(t-1) $2(m-t)$ $2(m-t)$		2(t-1) $2(m-t)(0, 10, 0, 10, 7, 2, 0, 10, 0, 10)$
$w_{t,8}$	$(\underbrace{5,9,\cdots,5,9}_{4,2,2,5,9,\cdots,5,9})$	$y_{t,8}$	$(\underbrace{8, 12, \cdots, 8, 12}_{,, 1, 3, 2}, \underbrace{7, 3, \underbrace{8, 12, \cdots, 8, 12}_{,, 1, 2}),$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>a</u> 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$w_{t,9}$		$g_{t,9}$	
$W_{t,10}$	$(4, 8, \cdots, 4, 8, 2, 4, 4, 8, \cdots, 4, 8)$	U+ 10	$(8, 12, \cdots, 8, 12, 6, 4, 8, 12, \cdots, 8, 12),$
<i>v</i> ,10	$2(t-1) \qquad \qquad 2(m-t)$	91,10	2(t-1)
$w_{t,11}$	$(5, 9, \cdots, 5, 9, 3, 5, 5, 9, \cdots, 5, 9)$	$y_{t,11}$	$(8, 12, \cdots, 8, 12, 6, 5, 8, 12, \cdots, 8, 12),$
	$\underbrace{2(t-1)}_{2(m-t)}$		$\underbrace{2(t-1)}_{2(m-t)}$
$w_{t,12}$	$(4, 8, \cdots, 4, 8, 2, 6, 4, 8, \cdots, 4, 8)$	$y_{t,12}$	$(8, 12, \cdots, 8, 12, 6, 6, 8, 12, \cdots, 8, 12),$
	$2(t-1) \qquad \qquad 2(m-t)$		$2(t-1) \qquad \qquad 2(m-t)$
$w_{t,13}$	$(\underbrace{3,7,\cdots,3,7},1,6,\underbrace{3,7,\cdots,3,7})$	$y_{t,13}$	$(\underline{7,11,\cdots,7,11},5,7,\underline{7,11,\cdots,7,11}),$
	$2(t-1) \qquad 2(m-t)$		$2(t-1) \qquad 2(m-t) \\ (7 \ 11 \ 7 \ 11 \ 5 \ 9 \ 7 \ 11 \ 7 \ 11)$
$w_{t,14}$	$(\underbrace{4, 0, \cdots, 4, 0}_{-4, 0, -2, -1}, \underbrace{2, 1, \underbrace{4, 0, \cdots, 4, 0}_{-4, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2$	$y_{t,14}$	$(\underbrace{(i,11,\cdots,i,11)}_{i=1}, 5, 8, \underbrace{(i,11,\cdots,i,11)}_{i=1}),$
11)4 1 1	$\begin{bmatrix} 2(t-1) & 2(m-t) \\ (3 \ 7 \ \cdots \ 3 \ 7 \ 3 \ 7 \ 3 \ 7 \ 3 \ 7 \ \cdots \ 3 \ 7) \end{bmatrix}$	14.10	$\begin{bmatrix} 2(t-1) & 2(m-t) \\ (7 \ 11 \ \cdots \ 7 \ 11 \ 6 \ 7 \ 7 \ 11 \ \cdots \ 7 \ 11) \end{bmatrix}$
<i>∞t</i> ,15	(3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	91,15	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

Figure 2. $Amal\{B_{60}^t, v \mid 1 \le t \le 3\}$ and $W_1 = \{v_{t,2}, x_{t,9} \mid 1 \le t \le 3\}$

5. Acknowledgments

This paper is partially supported by Hibah Riset Dasar FMIPA Universitas Andalas No. 18/UN.16.03.D/PP/FMIPA.2021.

References

- [1] S. Akhter and R. Farooq, Metric Dimension of Fullerene Graph, *Electron. J. Graph Theory Appl.*, **7**(1), (2019), 91 103.
- [2] V. Andova, F. Kardos, and R. Skrekovsi, Fullerene Graphs and Some Relevant Graphs Invariant, in: *Topics in Chemical Graph Theory*, University of Kragujevac and Faculty of Science, Kragujevac, (2014), 39 – 54, Mathematical Chemistry Monographs, 978-86-6009-027-2.
- [3] M. Baĉa, E.T. Baskoro, A.N.M. Salman, S.W. Saputro, and D. Suprijanto, The Metric Dimension of Regular Bipartite Graphs, *Bull. Math. Soc. Sci. Math. Roumanie Tome*, 54(102) No 1 (2011), 15 – 28.
- [4] J. Caceres, C. Hernando, M. Mora, I. Pelayo, M. Puertas, and C. Seara, On the metric dimension of some families of graphs, *Electron. Notes Discrete Math.*, 22 (2005), 129 133.
- [5] G. Chartrand, L. Eroh, M. Johnson, and O. Oellerman, Resolvability in graphs and the metric dimension of a graph, *Discrete Appl. Math.*, **105** (2000), 99 113.
- [6] R. Diestel, Graph Theory, 5th ed., Springer-Verlag New York Inc., New York, (2017).
- [7] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley, C60: Buckminsterfullerene, *Nature*, **318** (1985), 162 – 163.
- [8] C. Poisson, and P. Zhang, The metric dimension of unicyclic graphs, *J. Combin. Math. Comb. Comput.*, **40** (2002), 17 32.
- [9] A.H. Putri, L. Yulianti, and D. Welyyanti, Dimensi Metrik dari graf Buckminsterfullerene (in Bahasa), *Jurnal Matematika UNAND*, 8(4), (2019), 93 – 102.
- [10] S.W. Saputro, E.T. Baskoro, A.N.M. Salman, and D. Suprijanto, The metric dimension of a complete *n*-partite graphs and its Cartesian product with a path, *J. Combin. Math. Comb. Comput.*, **71** (2009), 283 – 293.
- [11] S.W. Saputro, R. Simanjuntak, S. Uttunggadewa, H. Assiyatun, E.T. Baskoro, A.N.M. Salman, and M. Baĉa, (2013), The metric dimension of the lexicographic product of graphs, *Discrete Math*, **313**(9) (2013), 1045 1051.
- [12] B. Shanmukha, B. Sooryanarayana, and K.S. Harinath, Metric dimension of wheels, *Far East J. Appl. Math.*, 8(3) (2002), 217 229.
- [13] R. Simanjuntak, S. Uttunggadewa, and S.W. Saputro, Metric Dimension of Amalgamation of Graphs, *Lect. Notes Comput. Sci.* (LNCS), 8986 (2015), 330 – 337.

- [14] B. Sooryanarayana, S. Kunikullaya, and N.N. Swamy, Metric dimension of generalized wheels, *Arab J. Math. Sci.*, **25**(2) (2019), 131 144.
- [15] I. Tomescu and I. Javaid, On the metric dimension of the Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie Tome, 50(98), No 4 (2007), 371 – 376.
- [16] L. Yulianti, N. Narwen, and S. Hariyani, A note on the metric dimension of subdivided thorn graphs, *Indones. J. Combin.*, 3(1) (2019), 34 – 40.
- [17] L. Yulianti, A. Putri, B. Rudianto, Y. Yanita, and D. Welyyanti, On the metric dimension of the triangle-net graph, *AIP Conf. Proc.*, (2022), accepted.