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Abstract

Let G and H be two given graphs. The notation /' — (G, H) means that any red-blue coloring on
the edges of F" will create either a red subgraph G or a blue subgraph H in F. Graph F'is a Ramsey
(G, H)-minimal graph if F satisfies two conditions: (1) F* — (G, H),and 2) F' — e - (G, H)
for every e € E(F'). Denote R(G, H) as the set of all (G, H)-minimal graphs. In this paper, we
prove that a tree 7" is not in R(mK>, bP,) if it has a diameter of at least n(b + m — 1) — 1 for
m,n,b > 2. Furthermore, we show that (b + m — 1)P, € R(mK,,bP,) for every m,n,b > 2.
We also prove that for n > 3, a cycle on k vertices Cj, is in R(mK>,,bP,) if and only if k£ €
nb+m—-2)+1Lnb+m-—1)—1].
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1. Introduction

The study on Ramsey-minimal graph has received increased attention in recent years. Let F, G,
and H be simple and undirected graphs. A notation /' — (G, H) means that if all the edges of F’
are arbitrarily colored by red-blue then F' will contain either a red subgraph GG or a blue subgraph
H. Graph F' is a Ramsey (G, H)-minimal graph if ' — (G, H) but F' — e - (G, H) for every
e € E(F). The set of all (G, H)-minimal graphs is denoted by R(G, H). A red-blue coloring of
edge of F' such that F' contains neither a red G nor a blue H is defined as a (G, H)-coloring.

The main problem of Ramsey (G, H)-minimal graph is determining graph F’, which belongs
to R(G, H) for given graphs GG and H. It is also interesting to determine whether the R (G, H) set
is finite or infinite. Burr et al. [3] showed that the set R(G, H) is Ramsey infinite when both G
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and H are forests, with at least one G or H having a non-star component. Burr et al. [4] proved
that R(mK,, H) is a Ramsey finite class for any graph H and positive integer m. They showed
that the set R(K,, H) = H, for any graph H, R(2K>,2K,) = {3K>,C5} and {2K3, K5, G, } are
members of R(2K5, K3). The graph G is given in Fig. 1.

Figure 1: G4

Burr et al. [4] also described a collection of ”T“ non-isomorphic graphs in R(2K,, K,,). Then,
Mangersen and Oeckermann [5] proved that R(2K5, K1) = {2K 1,2, Cu, (5}, and presented the
characterization of graphs belonging to R(2K>, K;,), for n > 3. Furthermore, Muhshi and
Baskoro [6] proved that R(3K5, P3) = {3P3,Cy U P3,C5 U P3,C7,Cs}. Baskoro and Yulianti
[1] characterized all graphs in R(2K5, P,,) for n = 4,5. Moreover, Yulianti et al. [10] gave the
construction of some infinite class in R(K 5, P;). Baskoro and Wijaya [2] derived the necessary
and sufficient conditions for graphs to be in R(2K5, H) for any connected graph H. Wijaya and
Baskoro [7] described the necessary and sufficient conditions for graphs in R(m Ky, H). In [8] Wi-
jaya et al. characterized all graphs belonging to R(2K5, K,), and in [9], Wijaya et al. characterized
all uncyclic graphs belonging to R(mKs, Ps).

In this paper, we study the Ramsey (m K5, bP, )-minimal graphs for b, m,n > 2. In particular,
we determine some graphs belonging to R(m Ky, bP,).

2. Preliminary Results

As the starting point, the following proposition is a sufficient condition to construct a graph in
R((m + 1)K, bP,) that comes from the graphs in R(mKs, bP,) for m,n,b > 3.

Proposition 2.1. For m,n,b > 3, if F € R(mK5,bP,) and G = P,, then F UG € R((m +
1)Ky, bP,).

Proof. Let us begin with some coloring definitions. Let ; be a red-blue coloring of the edge of G
such that GG contains a red K5, but it has no blue P,. We will show that FUG — ((m+1) Ky, bF,).
Suppose to the contrary that F' € R(mK>,bF,)and G = P, but FUG - ((m+1)K»,bP,). Then
there is an ((m + 1)K, bP,)-coloring ~y of edges of F' U G, namely 7(e) = u(e) forall e € E(F')
and v(e) = v1(e) for all e € E(G). Therefore, pu(e) must be a (mKsy, bP,)-coloring of the edge
of F. This led to a contradiction with ' — (mK,,bP,). To prove the minimality, suppose that
e € E(FUG). It suffices to consider e € E(F). Since ' € R(mKs,,bP,), then there exists an
(mKsy, bP,)—coloring 7, of the edge of ' — e. Define a red-blue coloring ¢ of edge of F'U G as
follows.
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7 (e*), otherwise.

be") = {’72(6*), ife* € E(F —e),

Therefore, we obtain an ((m + 1) K5, bP,)-coloring of edges of (F'UG) — e. O

3. Main Results
In Theorem 3.1 we determine some graphs belonging to R(mKs, bP,) for m,n,b > 2.
Theorem 3.1. Let m,n,b > 2. Then (b+ m — 1)P, € R(mKs,bP,).

Proof. Denote the j** path on n vertices as PJ for 1 < j < (b+ m — 1). The vertex set of
(b+m—1)P,is {v;;|]1 <i<mn1<j<(b+m—1)}. Define ¢, as the red coloring of
all edges that incident to (m — 1) vertices, where each vertex is in a different P,. It is obvious
that (b +m — 1)P, — (mK,,bP,). Next, we will prove that for every e € E((b+m — 1)P,),
(b+m —1)P, — e - (mK,,bP,). Without loss of the generality, let ¢ be an edge in the j* P,,
and Pﬂ: := PJ — e. Define a red-blue coloring 6 of the edge of (b + m — 1) P, such that

« b,(e*), ife* EE((b%—m—l)Pn—{Pg;}),
0(e") = .
blue, otherwise.

Then we obtain 6 as the (m K, bP,)-coloring of edges of (b +m — 1)P, — e. O

Next, in Theorem 3.2 we state the characterization of cycles that belong to R(mKs, bP,) for
m,b>2andn > 3.

Theorem 3.2. For m,b > 2 andn > 3, Cy, € R(mKs,,bP,) if and only if k € [n(b+m —2) +
Lnb+m—1)—1].

Proof. Define the vertex and edge sets of C';, as follows.

V(C) = {v|1<i<k}
E(Cy) = {ei=vw;|1<i<k, j=(i+1)modk}.

First, we want to show the backward direction. Let n(b+m —2)+1 <k <n(b+m—1) — 1.
We will show that Cy, — (m K5, bP,). Suppose that we do the maximal coloring such that there is
no red m K. This implies that there will be at most 2(m — 1) red edges. The red edges disconnect
the graph into m™* components satisfying m* < m — 1. Let us define each component by Fj,. If
the rest of the edges are colored blue, then we have blue UZI Py, with

m*

> (ki —1) = |E| - 2(m —1). (1)

i=1

10



On Ramsey (mKs, bP,,)-minimal Graphs | Nadia, L. Yulianti, F.F. Hadiputra

Let b; = |—|. Then b; denotes the number of disjoint P, contained in P,. To prove that C, —
n

(mK,,bP,), it is sufficient to show that Z:’il b; > b. According to the floor function, k; <
(b; + 1)n — 1. Set all terms except k,,~ to the right side of equation in (1), then we have

m*—1

ke = |E| —2(m — 1) = > (k= 1) + 1. 2)

i=1
Substituting |E| = k and k; < (b; + 1)n — 1 in (2) we have

m*—1

ke >k —2(m—1) = > ((bi+hn—1-1)+1

m*—1

=k—2(m-2) - > (bn+n—2)—1

=1
*_1

=k—2(m-2)— > bn—(n-2)(m"—1) -1 (3)
=1

Substituting m* < m — 1 and k > n(b+ m — 2) + 1 in (3), we have
m*—1
ke Zn(b+m—=2)+1-2m—2)—n > bi—(n—2)(m-2)-1
i=1
m*—1
=nb+m—2)—2(m—2)—n Y b—(n—2)(m-2)
i=1
m*—1
=nb+m—2)—n(m—-2)—n Z b;
i=1

m*—1
=nb—n Z b;. 4)
i=1

Hence, we compute the least value of b,,,« as follows.

Therefore, we have

m*

m*—1 m*—1 m*—1
Zbi: Z bi + by > Z b +b— Z b; = b.
=1 =1 =1

i=1

We conclude that U:; Py, will contain bP,,. Then, Cy, — (mKs, bP,).
For any ¢ € FE(Cy), Cr, — e = P,. Without loss of generality, let the path P, has a vertex set
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V(P.) = V(Cy) and an edge set E(FP;) = E(Cy — e). To show that P, - (mKs, bP,), define an
edge coloring o (e;) as follows.

[ red, ifie{pn—1,pn},
ay(e;) = { blue, otherwise.

for every positive p < m — 1. Hence, we have blue ("' P,,_1) U Py with

E* =k —n(m—1). ®)

*

Let b* = |—]. Then, b* denotes the number of disjoint P, contained in Pj-. To achieve P, —
n

(mK,,bP,), itis sufficient to show b* < b, since | J7";* P,_; does not contain any P,. By assigning
k<n(b+m —1)—1to (5), we have

E*<nb+m-—1)—1—n(m—1)=nb—1 < nb.

Therefore, we have
nb

* k*
b _LEJ < L;j < b.
Hence, Py« does not contain bP, implying C, — e - (mKs,bP,). It may be concluded that
Cr € R(mK»y,bP,).
For the inverse, we need to show that C}, - (mKy,bP,) if k < n(b+m —2) and Cy, — e —
(mKs,bP,) if kK > n(b+ m — 1). To show that Cy, - (mKs,bP,),k < n(b+ m — 2), define an
edge coloring ay(e;) as follows

[ red, ifi€ {gn—1,qn},
a(e;) = { blue, otherwise.

for every non-negative ¢ < m — 1. Hence, we have blue ((J,* P, 1) U P, with
k*=k—n(m-2)—1. (6)

Let b* = L%j Then, b* denotes the number of disjoint P, contained in Py.. To achieve C} —
(mKsy, bP,), it is sufficient to show b* < b, since U;’;Q P,_1 does not contain any P,. By assigning
k <n(b+m — 2) to (6), we have

E*<nb+m-—2)—n(m—2)—1=nb—1 < nb.

Consequently, we have
E* nb
_J < — =

b* =
Ln n

b.

Hence, P+ does not contain bP,, which implies Cj, - (mKs, bP,).
Lastly, we need to prove Cy, — e = P, — (mK>y,bP,) for k > n(b+ m — 1). The proof is similar
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with the proof of C}, — (m K, bP,), with the exception m* < m and k > n(b+ m — 1). Starting
from (3) while assigning |E/| = k& — 1 and the bounds of m* and &, we have

m*—1
ke > |E] = 2(m —2) = Y nb;— (n—2)(m" —1) - 1,

=1

:n(b+m—1)—1—2(m—1)—nz_:bi—(n—Q)(m—l)qu,
:n(b+m—1)—n(m—1)—nz_b,»,

m*—1
=nb—n Z b;.
i=1

This result is the same as (4). Therefore, the proof may be continued similarly to have

mz b; > 0.
i=1

Hence E’;l Py, will contain bP,. Therefore P, — (mKs, bP,). O

In Theorem 3.3, we give some disconnected graph belonging to R(mKs, (b+1)P,) for m,n >
dand 1 <b<m — 2.

Theorem 3.3. For m,n > 3, if Cy, € R(mKs, P,) with k = mn — 1, then for 1 <b < m — 2,
CrUbP, € R(mKs, (b+ 1)P,).

Proof. Let us define some coloring as follows.

1. ;1 be red coloring in bP, by coloring each edge that incident to a vertex in a different P,,
2. [35 be blue coloring in b P, by coloring each edge that incident to a vertex in a different P,,
3. 3 be (mKs, P,)—coloring of edge of C} — e that does not contain any blue P,.

As mentioned previously, for k = mn —1and 1 < b < m — 2, we will show that C, UbP,, —
(mKs, (b+ 1)P,). We will divide it into two conditions. First, since C}, € R(mKs, P,), if Cy
does not have red m K5 then Cj, must have a blue P,. In that condition, if we colored bF, by blue,
then we have b + 1 blue P,. Second, put the coloring /3; on the edges of b P, therefore we obtain
bred K. Then, we will show that Cy, — ((m — b)Ks, (b + 1)P,). Suppose that we do not have
(m — b) red K by taking the maximum coloring, i.e red (m — 1 — b) K, then from Theorem 3.2,
we have that

ken((+1)+(m—-0b—-2)+1, n((b+1)+(m—>b)—1)—1]
skenim—-1)+1, mn—1].

13
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Since k = mn — 1 is in interval, we conclude that C, — ((m — b) K3, (b + 1)P,). This implies
Cr UbP, — (mKy, (b+ 1)P,). Other that those red-blue colorings, we always have Cj U bP,, —
(mKs, (b+ 1)P,). Furthermore, we will show that by deleting an edge in (C, UbP,), (Cx, UbF,)
has neither red m K5 nor blue (b 4+ 1)P,. It suffices to consider that edge in Cy. Since C}y €
R(mKs, P,), there is an (mK,, P,)—coloring of edge of C} — e. Define a red-blue coloring (3 on
the edge of C;, U bP, as follows.

Ble) = {Bg(e*) ife* € E(Cy, —e),

B2(e*)  otherwise.

Therefore we obtain an (m K>, (b + 1) P, )-coloring of edges of (Cy, UbF,) — e. O

In the following theorem, we prove that a tree with certain diameter is not in R(mKs, bP,) for
m,n,b > 2.

Theorem 3.4. Let m,n,b > 2. If a tree T has a diameter at least n(b + m — 1) — 1, then
T ¢ R(mKa,bP,).

Proof. Let T be atree with diam(T") > n(b+m—1)—1. Suppose that thereisa T € R(mKs, bP,).
Let L be the longest path between vertex u;, and vy, in 7" which has a distance d(ur,vr) > n(b+
m — 1) — 1, then choose an edge e € FE(L) such that removing e makes L breaks into two
components, G; = P, and Go = L — G —e. Then, observe that diam(Gs) > n(b+m—1)—1—n
or Gy has at least (n(b + m — 1) — n) vertices. From the proof of Theorem 3.2, we obtain
Gy — (mKsy, (b— 1)P,). Let ¢ be a red-blue coloring of the edge of GG; such that (G; contains
a blue P, but no red K,. Next, let ¢» be a red-blue coloring of the edge of G5 such that G, —
(mKs, (b —1)P,). Define a red-blue coloring ¢ as follows.

o) — »(e), ifee€ E(Gy),
¢< ) {¢2(€), ife € E(GQ)

We obtain either red m K or blue bF, in L — e, a contradiction to the minimality. O

4. Conclusion

In this paper we prove that for m,n,b > 2, (b+m — 1)P, € R(mKs,bF,). We also give the
characterization of a cycle C}, to be in the class R(mKs, bP,) for m,b > 2 and n > 3. Next, we
show that for m,n > 3, Cy, UbP, € R(mK,, (b+ 1)P,), provided that Cy, € R(mKs,bP,) for
1 < b < m— 2. We also state that a tree 7" is not in R(mK>, bP,) if it has a diameter at least
n(b+m—1) —1form,n,b > 2.
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