
www.ijc.or.id

Indonesian Journal of Combinatorics 7 (1) (2023), 8–15

On Ramsey (mK2, bPn)-minimal Graphs
Nadiaa, Lyra Yuliantib, Fawwaz Fakhrurrozi Hadiputraa

aMaster Program of Mathematics, Institut Teknologi Bandung, Bandung - Indonesia
bDepartment of Mathematics and Data Science, Andalas University, Padang - Indonesia

20121022@mahasiswa.itb.ac.id, lyra@sci.unand.ac.id, fawwazfh@alumni.ui.ac.id

Abstract

Let G and H be two given graphs. The notation F → (G,H) means that any red-blue coloring on
the edges of F will create either a red subgraphG or a blue subgraphH in F . Graph F is a Ramsey
(G,H)-minimal graph if F satisfies two conditions: (1) F → (G,H), and (2) F − e 9 (G,H)
for every e ∈ E(F ). Denote R(G,H) as the set of all (G,H)-minimal graphs. In this paper, we
prove that a tree T is not in R(mK2, bPn) if it has a diameter of at least n(b + m − 1) − 1 for
m,n, b ≥ 2. Furthermore, we show that (b + m − 1)Pn ∈ R(mK2, bPn) for every m,n, b ≥ 2.
We also prove that for n ≥ 3, a cycle on k vertices Ck is in R(mK2, bPn) if and only if k ∈
[n(b+m− 2) + 1, n(b+m− 1)− 1].
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1. Introduction

The study on Ramsey-minimal graph has received increased attention in recent years. Let F,G,
and H be simple and undirected graphs. A notation F → (G,H) means that if all the edges of F
are arbitrarily colored by red-blue then F will contain either a red subgraph G or a blue subgraph
H . Graph F is a Ramsey (G,H)-minimal graph if F → (G,H) but F − e 9 (G,H) for every
e ∈ E(F ). The set of all (G,H)-minimal graphs is denoted by R(G,H). A red-blue coloring of
edge of F such that F contains neither a red G nor a blue H is defined as a (G,H)-coloring.

The main problem of Ramsey (G,H)-minimal graph is determining graph F , which belongs
toR(G,H) for given graphs G and H . It is also interesting to determine whether theR(G,H) set
is finite or infinite. Burr et al. [3] showed that the set R(G,H) is Ramsey infinite when both G
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and H are forests, with at least one G or H having a non-star component. Burr et al. [4] proved
that R(mK2, H) is a Ramsey finite class for any graph H and positive integer m. They showed
that the set R(K2, H) = H , for any graph H , R(2K2, 2K2) = {3K2, C5} and {2K3, K5, G1} are
members ofR(2K2, K3). The graph G1 is given in Fig. 1.

Figure 1: G1

Burr et al. [4] also described a collection of n+1
2

non-isomorphic graphs inR(2K2, Kn). Then,
Mangersen and Oeckermann [5] proved that R(2K2, K1,2) = {2K1,2, C4, C5}, and presented the
characterization of graphs belonging to R(2K2, K1,n), for n ≥ 3. Furthermore, Muhshi and
Baskoro [6] proved that R(3K2, P3) = {3P3, C4 ∪ P3, C5 ∪ P3, C7, C8}. Baskoro and Yulianti
[1] characterized all graphs in R(2K2, Pn) for n = 4, 5. Moreover, Yulianti et al. [10] gave the
construction of some infinite class in R(K1,2, P4). Baskoro and Wijaya [2] derived the necessary
and sufficient conditions for graphs to be in R(2K2, H) for any connected graph H . Wijaya and
Baskoro [7] described the necessary and sufficient conditions for graphs inR(mK2, H). In [8] Wi-
jaya et al. characterized all graphs belonging toR(2K2, K4), and in [9], Wijaya et al. characterized
all uncyclic graphs belonging toR(mK2, P3).

In this paper, we study the Ramsey (mK2, bPn)-minimal graphs for b,m, n ≥ 2. In particular,
we determine some graphs belonging toR(mK2, bPn).

2. Preliminary Results

As the starting point, the following proposition is a sufficient condition to construct a graph in
R((m+ 1)K2, bPn) that comes from the graphs inR(mK2, bPn) for m,n, b ≥ 3.

Proposition 2.1. For m,n, b ≥ 3, if F ∈ R(mK2, bPn) and G ∼= Pn, then F ∪ G ∈ R((m +
1)K2, bPn).

Proof. Let us begin with some coloring definitions. Let γ1 be a red-blue coloring of the edge of G
such thatG contains a redK2, but it has no blue Pn. We will show that F ∪G→ ((m+1)K2, bPn).
Suppose to the contrary that F ∈ R(mK2, bPn) andG ∼= Pn but F ∪G9 ((m+1)K2, bPn). Then
there is an ((m+ 1)K2, bPn)-coloring γ of edges of F ∪G, namely γ(e) = µ(e) for all e ∈ E(F )
and γ(e) = γ1(e) for all e ∈ E(G). Therefore, µ(e) must be a (mK2, bPn)-coloring of the edge
of F . This led to a contradiction with F → (mK2, bPn). To prove the minimality, suppose that
e ∈ E(F ∪ G). It suffices to consider e ∈ E(F ). Since F ∈ R(mK2, bPn), then there exists an
(mK2, bPn)−coloring γ2 of the edge of F − e. Define a red-blue coloring ψ of edge of F ∪ G as
follows.
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ψ(e∗) =

{
γ2(e

∗), if e∗ ∈ E(F − e),
γ1(e

∗), otherwise.

Therefore, we obtain an ((m+ 1)K2, bPn)-coloring of edges of (F ∪G)− e.

3. Main Results

In Theorem 3.1 we determine some graphs belonging toR(mK2, bPn) for m,n, b ≥ 2.

Theorem 3.1. Let m,n, b ≥ 2. Then (b+m− 1)Pn ∈ R(mK2, bPn).

Proof. Denote the jth path on n vertices as P j
n for 1 ≤ j ≤ (b + m − 1). The vertex set of

(b + m − 1)Pn is {vi,j|1 ≤ i ≤ n, 1 ≤ j ≤ (b + m − 1)}. Define θ1 as the red coloring of
all edges that incident to (m − 1) vertices, where each vertex is in a different Pn. It is obvious
that (b +m − 1)Pn → (mK2, bPn). Next, we will prove that for every e ∈ E((b +m − 1)Pn),
(b +m − 1)Pn − e 9 (mK2, bPn). Without loss of the generality, let e be an edge in the jth Pn,
and P j́

n := P j
n − e. Define a red-blue coloring θ of the edge of (b+m− 1)Pn such that

θ(e∗) =

{
θ1(e

∗), if e∗ ∈ E
(
(b+m− 1)Pn − {P j́

n}
)
,

blue, otherwise.

Then we obtain θ as the (mK2, bPn)-coloring of edges of (b+m− 1)Pn − e.

Next, in Theorem 3.2 we state the characterization of cycles that belong to R(mK2, bPn) for
m, b ≥ 2 and n ≥ 3.

Theorem 3.2. For m, b ≥ 2 and n ≥ 3, Ck ∈ R(mK2, bPn) if and only if k ∈ [n(b +m − 2) +
1, n(b+m− 1)− 1].

Proof. Define the vertex and edge sets of Ck as follows.

V (Ck) = {vi | 1 ≤ i ≤ k},
E(Ck) = {ei = vivj | 1 ≤ i ≤ k, j = (i+ 1)mod k}.

First, we want to show the backward direction. Let n(b +m − 2) + 1 ≤ k ≤ n(b +m − 1) − 1.
We will show that Ck → (mK2, bPn). Suppose that we do the maximal coloring such that there is
no red mK2. This implies that there will be at most 2(m− 1) red edges. The red edges disconnect
the graph into m∗ components satisfying m∗ ≤ m − 1. Let us define each component by Pki . If
the rest of the edges are colored blue, then we have blue

⋃m∗

i=1 Pki with

m∗∑
i=1

(ki − 1) = |E| − 2(m− 1). (1)
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Let bi = b
ki
n
c. Then bi denotes the number of disjoint Pn contained in Pki . To prove that Ck →

(mK2, bPn), it is sufficient to show that
∑m∗

i=1 bi ≥ b. According to the floor function, ki ≤
(bi + 1)n− 1. Set all terms except km∗ to the right side of equation in (1), then we have

km∗ = |E| − 2(m− 1)−
m∗−1∑
i=1

(ki − 1) + 1. (2)

Substituting |E| = k and ki ≤ (bi + 1)n− 1 in (2) we have

km∗ ≥ k − 2(m− 1)−
m∗−1∑
i=1

((bi + 1)n− 1− 1) + 1

= k − 2(m− 2)−
m∗−1∑
i=1

(bin+ n− 2)− 1

= k − 2(m− 2)−
m∗−1∑
i=1

bin− (n− 2)(m∗ − 1)− 1. (3)

Substituting m∗ ≤ m− 1 and k ≥ n(b+m− 2) + 1 in (3), we have

km∗ ≥ n(b+m− 2) + 1− 2(m− 2)− n
m∗−1∑
i=1

bi − (n− 2)(m− 2)− 1

= n(b+m− 2)− 2(m− 2)− n
m∗−1∑
i=1

bi − (n− 2)(m− 2)

= n(b+m− 2)− n(m− 2)− n
m∗−1∑
i=1

bi

= nb− n
m∗−1∑
i=1

bi. (4)

Hence, we compute the least value of bm∗ as follows.

bm∗ = bkm
∗

n
c ≥ b−

m∗−1∑
i=1

bi.

Therefore, we have

m∗∑
i=1

bi =
m∗−1∑
i=1

bi + bm∗ ≥
m∗−1∑
i=1

bi + b−
m∗−1∑
i=1

bi = b.

We conclude that
⋃m∗

i=1 Pki will contain bPn. Then, Ck → (mK2, bPn).
For any e ∈ E(Ck), Ck − e ∼= Pk. Without loss of generality, let the path Pk has a vertex set
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V (Pk) = V (Ck) and an edge set E(Pk) = E(Ck − e). To show that Pk 9 (mK2, bPn), define an
edge coloring α1(ei) as follows.

α1(ei) =

{
red, if i ∈ {pn− 1, pn},
blue, otherwise.

for every positive p ≤ m− 1. Hence, we have blue (
⋃m−1

i=1 Pn−1) ∪ Pk∗ with

k∗ = k − n(m− 1). (5)

Let b∗ = bk
∗

n
c. Then, b∗ denotes the number of disjoint Pn contained in Pk∗ . To achieve Pk 9

(mK2, bPn), it is sufficient to show b∗ < b, since
⋃m−2

i=1 Pn−1 does not contain any Pn. By assigning
k ≤ n(b+m− 1)− 1 to (5), we have

k∗ ≤ n(b+m− 1)− 1− n(m− 1) = nb− 1 < nb.

Therefore, we have

b∗ = bk
∗

n
c < bnb

n
c < b.

Hence, Pk∗ does not contain bPn implying Ck − e 9 (mK2, bPn). It may be concluded that
Ck ∈ R(mK2, bPn).
For the inverse, we need to show that Ck 9 (mK2, bPn) if k ≤ n(b + m − 2) and Ck − e →
(mK2, bPn) if k ≥ n(b +m − 1). To show that Ck 9 (mK2, bPn), k ≤ n(b +m − 2), define an
edge coloring α2(ei) as follows

α2(ei) =

{
red, if i ∈ {qn− 1, qn},
blue, otherwise.

for every non-negative q ≤ m− 1. Hence, we have blue (
⋃m−2

i=1 Pn−1) ∪ Pk∗ with

k∗ = k − n(m− 2)− 1. (6)

Let b∗ = bk∗
n
c. Then, b∗ denotes the number of disjoint Pn contained in Pk∗ . To achieve Ck 9

(mK2, bPn), it is sufficient to show b∗ < b, since
⋃m−2

i=1 Pn−1 does not contain any Pn. By assigning
k ≤ n(b+m− 2) to (6), we have

k∗ ≤ n(b+m− 2)− n(m− 2)− 1 = nb− 1 < nb.

Consequently, we have

b∗ = bk
∗

n
c < nb

n
= b.

Hence, Pk∗ does not contain bPn, which implies Ck 9 (mK2, bPn).
Lastly, we need to prove Ck − e ∼= Pk → (mK2, bPn) for k ≥ n(b+m− 1). The proof is similar
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with the proof of Ck → (mK2, bPn), with the exception m∗ ≤ m and k ≥ n(b+m− 1). Starting
from (3) while assigning |E| = k − 1 and the bounds of m∗ and k, we have

km∗ ≥ |E| − 2(m− 2)−
m∗−1∑
i=1

nbi − (n− 2)(m∗ − 1)− 1,

= n(b+m− 1)− 1− 2(m− 1)− n
m∗−1∑
i=1

bi − (n− 2)(m− 1) + 1,

= n(b+m− 1)− n(m− 1)− n
m∗−1∑
i=1

bi,

= nb− n
m∗−1∑
i=1

bi.

This result is the same as (4). Therefore, the proof may be continued similarly to have

m∗∑
i=1

bi ≥ b.

Hence
∑m∗

i=1 Pki will contain bPn. Therefore Pk → (mK2, bPn).

In Theorem 3.3, we give some disconnected graph belonging toR(mK2, (b+1)Pn) form,n ≥
3 and 1 ≤ b ≤ m− 2.

Theorem 3.3. For m,n ≥ 3, if Ck ∈ R(mK2, Pn) with k = mn − 1, then for 1 ≤ b ≤ m − 2,
Ck ∪ bPn ∈ R(mK2, (b+ 1)Pn).

Proof. Let us define some coloring as follows.

1. β1 be red coloring in bPn by coloring each edge that incident to a vertex in a different Pn,
2. β2 be blue coloring in bPn by coloring each edge that incident to a vertex in a different Pn,
3. β3 be (mK2, Pn)−coloring of edge of Ck − e that does not contain any blue Pn.

As mentioned previously, for k = mn− 1 and 1 ≤ b ≤ m− 2, we will show that Ck ∪ bPn →
(mK2, (b + 1)Pn). We will divide it into two conditions. First, since Ck ∈ R(mK2, Pn), if Ck

does not have red mK2 then Ck must have a blue Pn. In that condition, if we colored bPn by blue,
then we have b + 1 blue Pn. Second, put the coloring β1 on the edges of bPn, therefore we obtain
b red K2. Then, we will show that Ck → ((m − b)K2, (b + 1)Pn). Suppose that we do not have
(m− b) red K2 by taking the maximum coloring, i.e red (m− 1− b)K2, then from Theorem 3.2,
we have that

k ∈ [n((b+ 1) + (m− b)− 2) + 1, n((b+ 1) + (m− b)− 1)− 1]

⇔ k ∈ [n(m− 1) + 1, mn− 1].
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Since k = mn − 1 is in interval, we conclude that Ck → ((m − b)K2, (b + 1)Pn). This implies
Ck ∪ bPn → (mK2, (b+ 1)Pn). Other that those red-blue colorings, we always have Ck ∪ bPn →
(mK2, (b+ 1)Pn). Furthermore, we will show that by deleting an edge in (Ck ∪ bPn), (Ck ∪ bPn)
has neither red mK2 nor blue (b + 1)Pn. It suffices to consider that edge in Ck. Since Ck ∈
R(mK2, Pn), there is an (mK2, Pn)−coloring of edge of Ck − e. Define a red-blue coloring β on
the edge of Ck ∪ bPn as follows.

β(e∗) =

{
β3(e

∗) if e∗ ∈ E(Ck − e),
β2(e

∗) otherwise.

Therefore we obtain an (mK2, (b+ 1)Pn)-coloring of edges of (Ck ∪ bPn)− e.

In the following theorem, we prove that a tree with certain diameter is not inR(mK2, bPn) for
m,n, b ≥ 2.

Theorem 3.4. Let m,n, b ≥ 2. If a tree T has a diameter at least n(b + m − 1) − 1, then
T /∈ R(mK2, bPn).

Proof. Let T be a tree with diam(T ) ≥ n(b+m−1)−1. Suppose that there is a T ∈ R(mK2, bPn).
Let L be the longest path between vertex uL and vL in T which has a distance d(uL, vL) ≥ n(b +
m − 1) − 1, then choose an edge e ∈ E(L) such that removing e makes L breaks into two
components, G1

∼= Pn andG2
∼= L−G1−e. Then, observe that diam(G2) ≥ n(b+m−1)−1−n

or G2 has at least (n(b + m − 1) − n) vertices. From the proof of Theorem 3.2, we obtain
G2 → (mK2, (b − 1)Pn). Let φ1 be a red-blue coloring of the edge of G1 such that G1 contains
a blue Pn but no red K2. Next, let φ2 be a red-blue coloring of the edge of G2 such that G2 →
(mK2, (b− 1)Pn). Define a red-blue coloring φ as follows.

φ(e) =

{
φ1(e), if e ∈ E(G1),
φ2(e), if e ∈ E(G2).

We obtain either red mK2 or blue bPn in L− e, a contradiction to the minimality.

4. Conclusion

In this paper we prove that for m,n, b ≥ 2, (b +m− 1)Pn ∈ R(mK2, bPn). We also give the
characterization of a cycle Ck to be in the class R(mK2, bPn) for m, b ≥ 2 and n ≥ 3. Next, we
show that for m,n ≥ 3, Ck ∪ bPn ∈ R(mK2, (b + 1)Pn), provided that Ck ∈ R(mK2, bPn) for
1 ≤ b ≤ m − 2. We also state that a tree T is not in R(mK2, bPn) if it has a diameter at least
n(b+m− 1)− 1 for m,n, b ≥ 2.
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