On Ramsey $\left(m K_{2}, b P_{n}\right)$-minimal Graphs

Nadia ${ }^{\text {a }}$, Lyra Yulianti ${ }^{\text {b }}$, Fawwaz Fakhrurrozi Hadiputra ${ }^{\text {a }}$
${ }^{a}$ Master Program of Mathematics, Institut Teknologi Bandung, Bandung - Indonesia
${ }^{b}$ Department of Mathematics and Data Science, Andalas University, Padang - Indonesia
20121022@mahasiswa.itb.ac.id, lyra@sci.unand.ac.id, fawwazfh@alumni.ui.ac.id

Abstract

Let G and H be two given graphs. The notation $F \rightarrow(G, H)$ means that any red-blue coloring on the edges of F will create either a red subgraph G or a blue subgraph H in F. Graph F is a Ramsey (G, H)-minimal graph if F satisfies two conditions: (1) $F \rightarrow(G, H)$, and (2) $F-e \nrightarrow(G, H)$ for every $e \in E(F)$. Denote $\mathcal{R}(G, H)$ as the set of all (G, H)-minimal graphs. In this paper, we prove that a tree T is not in $\mathcal{R}\left(m K_{2}, b P_{n}\right)$ if it has a diameter of at least $n(b+m-1)-1$ for $m, n, b \geq 2$. Furthermore, we show that $(b+m-1) P_{n} \in \mathcal{R}\left(m K_{2}, b P_{n}\right)$ for every $m, n, b \geq 2$. We also prove that for $n \geq 3$, a cycle on k vertices C_{k} is in $R\left(m K_{2}, b P_{n}\right)$ if and only if $k \in$ $[n(b+m-2)+1, n(b+m-1)-1]$.

Keywords: Path graphs, Matchings, Ramsey Minimal Graphs.
Mathematics Subject Classification : 05D10, 05C55, 05C38

1. Introduction

The study on Ramsey-minimal graph has received increased attention in recent years. Let F, G, and H be simple and undirected graphs. A notation $F \rightarrow(G, H)$ means that if all the edges of F are arbitrarily colored by red-blue then F will contain either a red subgraph G or a blue subgraph H. Graph F is a Ramsey (G, H)-minimal graph if $F \rightarrow(G, H)$ but $F-e \rightarrow(G, H)$ for every $e \in E(F)$. The set of all (G, H)-minimal graphs is denoted by $\mathcal{R}(G, H)$. A red-blue coloring of edge of F such that F contains neither a red G nor a blue H is defined as a (G, H)-coloring.

The main problem of Ramsey (G, H)-minimal graph is determining graph F, which belongs to $\mathcal{R}(G, H)$ for given graphs G and H. It is also interesting to determine whether the $\mathcal{R}(G, H)$ set is finite or infinite. Burr et al. [3] showed that the set $\mathcal{R}(G, H)$ is Ramsey infinite when both G

Received: 30 June 2022, Revised: 07 May 2023, Accepted: 27 June 2023.
and H are forests, with at least one G or H having a non-star component. Burr et al. [4] proved that $\mathcal{R}\left(m K_{2}, H\right)$ is a Ramsey finite class for any graph H and positive integer m. They showed that the set $\mathcal{R}\left(K_{2}, H\right)=H$, for any graph $H, \mathcal{R}\left(2 K_{2}, 2 K_{2}\right)=\left\{3 K_{2}, C_{5}\right\}$ and $\left\{2 K_{3}, K_{5}, G_{1}\right\}$ are members of $\mathcal{R}\left(2 K_{2}, K_{3}\right)$. The graph G_{1} is given in Fig. 1.

Figure 1: G_{1}
Burr et al. [4] also described a collection of $\frac{n+1}{2}$ non-isomorphic graphs in $\mathcal{R}\left(2 K_{2}, K_{n}\right)$. Then, Mangersen and Oeckermann [5] proved that $\mathcal{R}\left(2 K_{2}, K_{1,2}\right)=\left\{2 K_{1,2}, C_{4}, C_{5}\right\}$, and presented the characterization of graphs belonging to $\mathcal{R}\left(2 K_{2}, K_{1, n}\right)$, for $n \geq 3$. Furthermore, Muhshi and Baskoro [6] proved that $\mathcal{R}\left(3 K_{2}, P_{3}\right)=\left\{3 P_{3}, C_{4} \cup P_{3}, C_{5} \cup P_{3}, C_{7}, C_{8}\right\}$. Baskoro and Yulianti [1] characterized all graphs in $\mathcal{R}\left(2 K_{2}, P_{n}\right)$ for $n=4,5$. Moreover, Yulianti et al. [10] gave the construction of some infinite class in $\mathcal{R}\left(K_{1,2}, P_{4}\right)$. Baskoro and Wijaya [2] derived the necessary and sufficient conditions for graphs to be in $\mathcal{R}\left(2 K_{2}, H\right)$ for any connected graph H. Wijaya and Baskoro [7] described the necessary and sufficient conditions for graphs in $\mathcal{R}\left(m K_{2}, H\right)$. In [8] Wijaya et al. characterized all graphs belonging to $\mathcal{R}\left(2 K_{2}, K_{4}\right)$, and in [9], Wijaya et al. characterized all uncyclic graphs belonging to $\mathcal{R}\left(m K_{2}, P_{3}\right)$.

In this paper, we study the Ramsey $\left(m K_{2}, b P_{n}\right)$-minimal graphs for $b, m, n \geq 2$. In particular, we determine some graphs belonging to $\mathcal{R}\left(m K_{2}, b P_{n}\right)$.

2. Preliminary Results

As the starting point, the following proposition is a sufficient condition to construct a graph in $\mathcal{R}\left((m+1) K_{2}, b P_{n}\right)$ that comes from the graphs in $\mathcal{R}\left(m K_{2}, b P_{n}\right)$ for $m, n, b \geq 3$.

Proposition 2.1. For $m, n, b \geq 3$, if $F \in \mathcal{R}\left(m K_{2}, b P_{n}\right)$ and $G \cong P_{n}$, then $F \cup G \in \mathcal{R}((m+$ 1) $\left.K_{2}, b P_{n}\right)$.

Proof. Let us begin with some coloring definitions. Let γ_{1} be a red-blue coloring of the edge of G such that G contains a red K_{2}, but it has no blue P_{n}. We will show that $F \cup G \rightarrow\left((m+1) K_{2}, b P_{n}\right)$. Suppose to the contrary that $F \in \mathcal{R}\left(m K_{2}, b P_{n}\right)$ and $G \cong P_{n}$ but $F \cup G \nrightarrow\left((m+1) K_{2}, b P_{n}\right)$. Then there is an $\left((m+1) K_{2}, b P_{n}\right)$-coloring γ of edges of $F \cup G$, namely $\gamma(e)=\mu(e)$ for all $e \in E(F)$ and $\gamma(e)=\gamma_{1}(e)$ for all $e \in E(G)$. Therefore, $\mu(e)$ must be a $\left(m K_{2}, b P_{n}\right)$-coloring of the edge of F. This led to a contradiction with $F \rightarrow\left(m K_{2}, b P_{n}\right)$. To prove the minimality, suppose that $e \in E(F \cup G)$. It suffices to consider $e \in E(F)$. Since $F \in \mathcal{R}\left(m K_{2}, b P_{n}\right)$, then there exists an ($m K_{2}, b P_{n}$)-coloring γ_{2} of the edge of $F-e$. Define a red-blue coloring ψ of edge of $F \cup G$ as follows.

$$
\psi\left(e^{*}\right)= \begin{cases}\gamma_{2}\left(e^{*}\right), & \text { if } e^{*} \in E(F-e) \\ \gamma_{1}\left(e^{*}\right), & \text { otherwise }\end{cases}
$$

Therefore, we obtain an $\left((m+1) K_{2}, b P_{n}\right)$-coloring of edges of $(F \cup G)-e$.

3. Main Results

In Theorem 3.1 we determine some graphs belonging to $\mathcal{R}\left(m K_{2}, b P_{n}\right)$ for $m, n, b \geq 2$.
Theorem 3.1. Let $m, n, b \geq 2$. Then $(b+m-1) P_{n} \in \mathcal{R}\left(m K_{2}, b P_{n}\right)$.
Proof. Denote the $j^{\text {th }}$ path on n vertices as P_{n}^{j} for $1 \leq j \leq(b+m-1)$. The vertex set of $(b+m-1) P_{n}$ is $\left\{v_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq(b+m-1)\right\}$. Define θ_{1} as the red coloring of all edges that incident to $(m-1)$ vertices, where each vertex is in a different P_{n}. It is obvious that $(b+m-1) P_{n} \rightarrow\left(m K_{2}, b P_{n}\right)$. Next, we will prove that for every $e \in E\left((b+m-1) P_{n}\right)$, $(b+m-1) P_{n}-e \nrightarrow\left(m K_{2}, b P_{n}\right)$. Without loss of the generality, let e be an edge in the $j^{t h} P_{n}$, and $P_{n}^{j}:=P_{n}^{j}-e$. Define a red-blue coloring θ of the edge of $(b+m-1) P_{n}$ such that

$$
\theta\left(e^{*}\right)= \begin{cases}\theta_{1}\left(e^{*}\right), & \text { if } e^{*} \in E\left((b+m-1) P_{n}-\left\{P_{n}^{j}\right\}\right), \\ \text { blue, }, & \text { otherwise }\end{cases}
$$

Then we obtain θ as the $\left(m K_{2}, b P_{n}\right)$-coloring of edges of $(b+m-1) P_{n}-e$.
Next, in Theorem 3.2 we state the characterization of cycles that belong to $\mathcal{R}\left(m K_{2}, b P_{n}\right)$ for $m, b \geq 2$ and $n \geq 3$.

Theorem 3.2. For $m, b \geq 2$ and $n \geq 3, C_{k} \in \mathcal{R}\left(m K_{2}, b P_{n}\right)$ if and only if $k \in[n(b+m-2)+$ $1, n(b+m-1)-1]$.

Proof. Define the vertex and edge sets of C_{k} as follows.

$$
\begin{aligned}
& V\left(C_{k}\right)=\left\{v_{i} \mid 1 \leq i \leq k\right\} \\
& E\left(C_{k}\right)=\left\{e_{i}=v_{i} v_{j} \mid 1 \leq i \leq k, j=(i+1) \bmod k\right\} .
\end{aligned}
$$

First, we want to show the backward direction. Let $n(b+m-2)+1 \leq k \leq n(b+m-1)-1$. We will show that $C_{k} \rightarrow\left(m K_{2}, b P_{n}\right)$. Suppose that we do the maximal coloring such that there is no red $m K_{2}$. This implies that there will be at most $2(m-1)$ red edges. The red edges disconnect the graph into m^{*} components satisfying $m^{*} \leq m-1$. Let us define each component by $P_{k_{i}}$. If the rest of the edges are colored blue, then we have blue $\bigcup_{i=1}^{m^{*}} P_{k_{i}}$ with

$$
\begin{equation*}
\sum_{i=1}^{m^{*}}\left(k_{i}-1\right)=|E|-2(m-1) \tag{1}
\end{equation*}
$$

Let $b_{i}=\left\lfloor\frac{k_{i}}{n}\right\rfloor$. Then b_{i} denotes the number of disjoint P_{n} contained in $P_{k_{i}}$. To prove that $C_{k} \rightarrow$ $\left(m K_{2}, b P_{n}\right)$, it is sufficient to show that $\sum_{i=1}^{m^{*}} b_{i} \geq b$. According to the floor function, $k_{i} \leq$ $\left(b_{i}+1\right) n-1$. Set all terms except $k_{m^{*}}$ to the right side of equation in (1), then we have

$$
\begin{equation*}
k_{m^{*}}=|E|-2(m-1)-\sum_{i=1}^{m^{*}-1}\left(k_{i}-1\right)+1 . \tag{2}
\end{equation*}
$$

Substituting $|E|=k$ and $k_{i} \leq\left(b_{i}+1\right) n-1$ in (2) we have

$$
\begin{align*}
k_{m^{*}} & \geq k-2(m-1)-\sum_{i=1}^{m^{*}-1}\left(\left(b_{i}+1\right) n-1-1\right)+1 \\
& =k-2(m-2)-\sum_{i=1}^{m^{*}-1}\left(b_{i} n+n-2\right)-1 \\
& =k-2(m-2)-\sum_{i=1}^{m^{*}-1} b_{i} n-(n-2)\left(m^{*}-1\right)-1 . \tag{3}
\end{align*}
$$

Substituting $m^{*} \leq m-1$ and $k \geq n(b+m-2)+1$ in (3), we have

$$
\begin{align*}
k_{m^{*}} & \geq n(b+m-2)+1-2(m-2)-n \sum_{i=1}^{m^{*}-1} b_{i}-(n-2)(m-2)-1 \\
& =n(b+m-2)-2(m-2)-n \sum_{i=1}^{m^{*}-1} b_{i}-(n-2)(m-2) \\
& =n(b+m-2)-n(m-2)-n \sum_{i=1}^{m^{*}-1} b_{i} \\
& =n b-n \sum_{i=1}^{m^{*}-1} b_{i} . \tag{4}
\end{align*}
$$

Hence, we compute the least value of $b_{m^{*}}$ as follows.

$$
b_{m^{*}}=\left\lfloor\frac{k_{m^{*}}}{n}\right\rfloor \geq b-\sum_{i=1}^{m^{*}-1} b_{i} .
$$

Therefore, we have

$$
\sum_{i=1}^{m^{*}} b_{i}=\sum_{i=1}^{m^{*}-1} b_{i}+b_{m^{*}} \geq \sum_{i=1}^{m^{*}-1} b_{i}+b-\sum_{i=1}^{m^{*}-1} b_{i}=b
$$

We conclude that $\bigcup_{i=1}^{m^{*}} P_{k_{i}}$ will contain $b P_{n}$. Then, $C_{k} \rightarrow\left(m K_{2}, b P_{n}\right)$.
For any $e \in E\left(C_{k}\right), C_{k}-e \cong P_{k}$. Without loss of generality, let the path P_{k} has a vertex set
$V\left(P_{k}\right)=V\left(C_{k}\right)$ and an edge set $E\left(P_{k}\right)=E\left(C_{k}-e\right)$. To show that $P_{k} \nrightarrow\left(m K_{2}, b P_{n}\right)$, define an edge coloring $\alpha_{1}\left(e_{i}\right)$ as follows.

$$
\alpha_{1}\left(e_{i}\right)= \begin{cases}\text { red, } & \text { if } i \in\{p n-1, p n\}, \\ \text { blue, } & \text { otherwise }\end{cases}
$$

for every positive $p \leq m-1$. Hence, we have blue $\left(\bigcup_{i=1}^{m-1} P_{n-1}\right) \cup P_{k^{*}}$ with

$$
\begin{equation*}
k^{*}=k-n(m-1) . \tag{5}
\end{equation*}
$$

Let $b^{*}=\left\lfloor\frac{k^{*}}{n}\right\rfloor$. Then, b^{*} denotes the number of disjoint P_{n} contained in $P_{k^{*}}$. To achieve $P_{k} \nrightarrow$ $\left(m K_{2}, b P_{n}\right)$, it is sufficient to show $b^{*}<b$, since $\bigcup_{i=1}^{m-2} P_{n-1}$ does not contain any P_{n}. By assigning $k \leq n(b+m-1)-1$ to (5), we have

$$
k^{*} \leq n(b+m-1)-1-n(m-1)=n b-1<n b .
$$

Therefore, we have

$$
b^{*}=\left\lfloor\frac{k^{*}}{n}\right\rfloor<\left\lfloor\frac{n b}{n}\right\rfloor<b .
$$

Hence, $P_{k^{*}}$ does not contain $b P_{n}$ implying $C_{k}-e \nrightarrow\left(m K_{2}, b P_{n}\right)$. It may be concluded that $C_{k} \in \mathcal{R}\left(m K_{2}, b P_{n}\right)$.
For the inverse, we need to show that $C_{k} \nrightarrow\left(m K_{2}, b P_{n}\right)$ if $k \leq n(b+m-2)$ and $C_{k}-e \rightarrow$ $\left(m K_{2}, b P_{n}\right)$ if $k \geq n(b+m-1)$. To show that $C_{k} \nrightarrow\left(m K_{2}, b P_{n}\right), k \leq n(b+m-2)$, define an edge coloring $\alpha_{2}\left(e_{i}\right)$ as follows

$$
\alpha_{2}\left(e_{i}\right)= \begin{cases}\text { red, } & \text { if } i \in\{q n-1, q n\}, \\ \text { blue, }, & \text { otherwise } .\end{cases}
$$

for every non-negative $q \leq m-1$. Hence, we have blue $\left(\bigcup_{i=1}^{m-2} P_{n-1}\right) \cup P_{k^{*}}$ with

$$
\begin{equation*}
k^{*}=k-n(m-2)-1 \tag{6}
\end{equation*}
$$

Let $b^{*}=\left\lfloor\frac{k^{*}}{n}\right\rfloor$. Then, b^{*} denotes the number of disjoint P_{n} contained in $P_{k^{*}}$. To achieve $C_{k} \nrightarrow$ $\left(m K_{2}, b P_{n}\right)$, it is sufficient to show $b^{*}<b$, since $\bigcup_{i=1}^{m-2} P_{n-1}$ does not contain any P_{n}. By assigning $k \leq n(b+m-2)$ to (6), we have

$$
k^{*} \leq n(b+m-2)-n(m-2)-1=n b-1<n b .
$$

Consequently, we have

$$
b^{*}=\left\lfloor\frac{k^{*}}{n}\right\rfloor<\frac{n b}{n}=b
$$

Hence, $P_{k^{*}}$ does not contain $b P_{n}$, which implies $C_{k} \nrightarrow\left(m K_{2}, b P_{n}\right)$.
Lastly, we need to prove $C_{k}-e \cong P_{k} \rightarrow\left(m K_{2}, b P_{n}\right)$ for $k \geq n(b+m-1)$. The proof is similar
with the proof of $C_{k} \rightarrow\left(m K_{2}, b P_{n}\right)$, with the exception $m^{*} \leq m$ and $k \geq n(b+m-1)$. Starting from (3) while assigning $|E|=k-1$ and the bounds of m^{*} and k, we have

$$
\begin{aligned}
k_{m^{*}} & \geq|E|-2(m-2)-\sum_{i=1}^{m^{*}-1} n b_{i}-(n-2)\left(m^{*}-1\right)-1, \\
& =n(b+m-1)-1-2(m-1)-n \sum_{i=1}^{m^{*}-1} b_{i}-(n-2)(m-1)+1, \\
& =n(b+m-1)-n(m-1)-n \sum_{i=1}^{m^{*}-1} b_{i}, \\
& =n b-n \sum_{i=1}^{m^{*}-1} b_{i} .
\end{aligned}
$$

This result is the same as (4). Therefore, the proof may be continued similarly to have

$$
\sum_{i=1}^{m^{*}} b_{i} \geq b
$$

Hence $\sum_{i=1}^{m^{*}} P_{k_{i}}$ will contain $b P_{n}$. Therefore $P_{k} \rightarrow\left(m K_{2}, b P_{n}\right)$.
In Theorem 3.3, we give some disconnected graph belonging to $\mathcal{R}\left(m K_{2},(b+1) P_{n}\right)$ for $m, n \geq$ 3 and $1 \leq b \leq m-2$.

Theorem 3.3. For $m, n \geq 3$, if $C_{k} \in \mathcal{R}\left(m K_{2}, P_{n}\right)$ with $k=m n-1$, then for $1 \leq b \leq m-2$, $C_{k} \cup b P_{n} \in \mathcal{R}\left(m K_{2},(b+1) P_{n}\right)$.

Proof. Let us define some coloring as follows.

1. β_{1} be red coloring in $b P_{n}$ by coloring each edge that incident to a vertex in a different P_{n},
2. β_{2} be blue coloring in $b P_{n}$ by coloring each edge that incident to a vertex in a different P_{n},
3. β_{3} be $\left(m K_{2}, P_{n}\right)$-coloring of edge of $C_{k}-e$ that does not contain any blue P_{n}.

As mentioned previously, for $k=m n-1$ and $1 \leq b \leq m-2$, we will show that $C_{k} \cup b P_{n} \rightarrow$ $\left(m K_{2},(b+1) P_{n}\right)$. We will divide it into two conditions. First, since $C_{k} \in \mathcal{R}\left(m K_{2}, P_{n}\right)$, if C_{k} does not have red $m K_{2}$ then C_{k} must have a blue P_{n}. In that condition, if we colored $b P_{n}$ by blue, then we have $b+1$ blue P_{n}. Second, put the coloring β_{1} on the edges of $b P_{n}$, therefore we obtain b red K_{2}. Then, we will show that $C_{k} \rightarrow\left((m-b) K_{2},(b+1) P_{n}\right)$. Suppose that we do not have $(m-b)$ red K_{2} by taking the maximum coloring, i.e red $(m-1-b) K_{2}$, then from Theorem 3.2, we have that

$$
\begin{aligned}
& k \in[n((b+1)+(m-b)-2)+1, n((b+1)+(m-b)-1)-1] \\
\Leftrightarrow & k \in[n(m-1)+1, m n-1] .
\end{aligned}
$$

Since $k=m n-1$ is in interval, we conclude that $C_{k} \rightarrow\left((m-b) K_{2},(b+1) P_{n}\right)$. This implies $C_{k} \cup b P_{n} \rightarrow\left(m K_{2},(b+1) P_{n}\right)$. Other that those red-blue colorings, we always have $C_{k} \cup b P_{n} \rightarrow$ $\left(m K_{2},(b+1) P_{n}\right)$. Furthermore, we will show that by deleting an edge in $\left(C_{k} \cup b P_{n}\right),\left(C_{k} \cup b P_{n}\right)$ has neither red $m K_{2}$ nor blue $(b+1) P_{n}$. It suffices to consider that edge in C_{k}. Since $C_{k} \in$ $\mathcal{R}\left(m K_{2}, P_{n}\right)$, there is an $\left(m K_{2}, P_{n}\right)$-coloring of edge of $C_{k}-e$. Define a red-blue coloring β on the edge of $C_{k} \cup b P_{n}$ as follows.

$$
\beta\left(e^{*}\right)= \begin{cases}\beta_{3}\left(e^{*}\right) & \text { if } e^{*} \in E\left(C_{k}-e\right) \\ \beta_{2}\left(e^{*}\right) & \text { otherwise }\end{cases}
$$

Therefore we obtain an $\left(m K_{2},(b+1) P_{n}\right)$-coloring of edges of $\left(C_{k} \cup b P_{n}\right)-e$.
In the following theorem, we prove that a tree with certain diameter is not in $\mathcal{R}\left(m K_{2}, b P_{n}\right)$ for $m, n, b \geq 2$.

Theorem 3.4. Let $m, n, b \geq 2$. If a tree T has a diameter at least $n(b+m-1)-1$, then $T \notin \mathcal{R}\left(m K_{2}, b P_{n}\right)$.

Proof. Let T be a tree with $\operatorname{diam}(T) \geq n(b+m-1)-1$. Suppose that there is a $T \in \mathcal{R}\left(m K_{2}, b P_{n}\right)$. Let L be the longest path between vertex u_{L} and v_{L} in T which has a distance $d\left(u_{L}, v_{L}\right) \geq n(b+$ $m-1)-1$, then choose an edge $e \in E(L)$ such that removing e makes L breaks into two components, $G_{1} \cong P_{n}$ and $G_{2} \cong L-G_{1}-e$. Then, observe that $\operatorname{diam}\left(G_{2}\right) \geq n(b+m-1)-1-n$ or G_{2} has at least $(n(b+m-1)-n)$ vertices. From the proof of Theorem 3.2, we obtain $G_{2} \rightarrow\left(m K_{2},(b-1) P_{n}\right)$. Let ϕ_{1} be a red-blue coloring of the edge of G_{1} such that G_{1} contains a blue P_{n} but no red K_{2}. Next, let ϕ_{2} be a red-blue coloring of the edge of G_{2} such that $G_{2} \rightarrow$ $\left(m K_{2},(b-1) P_{n}\right)$. Define a red-blue coloring ϕ as follows.

$$
\phi(e)= \begin{cases}\phi_{1}(e), & \text { if } e \in E\left(G_{1}\right), \\ \phi_{2}(e), & \text { if } e \in E\left(G_{2}\right) .\end{cases}
$$

We obtain either red $m K_{2}$ or blue $b P_{n}$ in $L-e$, a contradiction to the minimality.

4. Conclusion

In this paper we prove that for $m, n, b \geq 2,(b+m-1) P_{n} \in \mathcal{R}\left(m K_{2}, b P_{n}\right)$. We also give the characterization of a cycle C_{k} to be in the class $\mathcal{R}\left(m K_{2}, b P_{n}\right)$ for $m, b \geq 2$ and $n \geq 3$. Next, we show that for $m, n \geq 3, C_{k} \cup b P_{n} \in \mathcal{R}\left(m K_{2},(b+1) P_{n}\right)$, provided that $C_{k} \in \mathcal{R}\left(m K_{2}, b P_{n}\right)$ for $1 \leq b \leq m-2$. We also state that a tree T is not in $\mathcal{R}\left(m K_{2}, b P_{n}\right)$ if it has a diameter at least $n(b+m-1)-1$ for $m, n, b \geq 2$.

References

[1] E. T. Baskoro and L. Yulianti, On Ramsey minimal graphs for $2 K_{2}$ versus P_{n}, Adv. Appl. Discrete Math., 8(2) (2011): 83 - 90.
[2] E. T. Baskoro, and K. Wijaya, On Ramsey $\left(2 K_{2}, K_{4}\right)$-minimal graphs, Mathematics in the 21 st Century, Springer Proc. Math. Stat., 98 (2015): 11 - 17.
[3] S. A. Burr, P. Erdos, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, Ramsey minimal graphs for forests, Discrete Math., 38(1) (1982): 23 - 32.
[4] S. A. Burr, P. Erdos, R. J. Faudree, and R. H. Schelp, A class of Ramsey-finite graphs, Proc. 9th Southeastern Conf. Comb. Graph Theory Comput., (1978): 171 - 180.
[5] I. Mengersen, and J. Oeckermann, Matching-star Ramsey Sets, Discrete Appl. Math., 95 (1999): $417-424$.
[6] H. Muhshi, and E. T. Baskoro, On Ramsey $\left(3 K_{2}, P_{3}\right)$-minimal graphs, AIP Conf. Proc., 1450 (2012): $110-117$.
[7] K. Wijaya, E. T. Baskoro, H. Assiyatun, and D. Suprijanto, On Ramsey ($m K_{2}, H$)-Minimal Graphs, Graphs Comb., 23 (2017): 233 - 243.
[8] K. Wijaya, E. T. Baskoro, H. Assiyatun, and D. Suprijanto, The complete list of Ramsey $\left(2 K_{2}, K_{4}\right)$-minimal graphs, Electron. J. Graph Theory Appl., 3(2)(2015): 216 - 227.
[9] K. Wijaya, E. T. Baskoro, H. Assiyatun, and D. Suprijanto, On Uncyclic Ramsey ($m K_{2}, P_{3}$)minimal graphs, Proc. Comput. Sci., 74 (2015): 10 - 14.
[10] L. Yulianti, H. Assiyatun, S. Utunggadewa, and E. T. Baskoro, On Ramsey $\left(K_{1,2}, P_{4}\right)$ minimal graphs, Far East J. Math. Sci., 40(1) (2010): 23 - 26.

