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Abstract

In this paper, we give a relation between the eigenvalues of the antiadjacency matrix of Cay(Zn, S)
and the eigenvalues of the antiadjacency matrix of Cay(Zn, (Zn − {0})− S), as well as the eigen-
values of the adjacency matrix of Cay(Zn, S). Then, we give the characterization of connection
set S where the eigenvalues of the antiadjacency matrix of Cay(Zn, S) are all integers.
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1. Introduction

Cayley graph has always been an interesting subject in mathematics, since it allows us to un-
derstand group theory by using graph theory and vice versa. Let G be a group with 0G as its
identity element and S be an inverse-closed (that is S = S−1, where S−1 = {s−1 : s ∈ S}) subset
of G−{0G}. Cayley graph on group G with connection set S, denoted by Cay(G,S) is defined as
graph withG as its vertex set and arcs (x, y) for every pair (x, y) which satisfies xy−1 ∈ S [9]. One
of the most active research area in Cayley graph is considering the eigenvalues of the adjacency
matrix of Cayley graphs.

There are many intriguing research problems related to eigenvalues research of the adjacency
matrix, such as the problems of finding integral Cayley graphs. Integral graph itself is defined as
graphs whose eigenvalues of adjacency matrix are all integer. The search for integral graphs began
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from the research done by Harary and Schwenk [5] in 1974. There are many research about Cayley
integral graphs on various groups, such as permutation group ([4], [6]), dihedral group ([1], [10]),
and Zn group ([7], [14]).

In his research, So [14] has found a necessary and sufficient condition for Cayley graph of Zn
to be integral, which is stated in the following theorem

Theorem 1.1. [14] Let n be an integer greater than 1 and d be a positive factor of n. Define
Sn(d) = {a : 0 < a ≤ n, gcd(a, n) = d}. Then Cay(Zn, S) is an integral graph if and only if S is
the union of some Sn(d).

Klotz and Sander [7] in 2007 also found the sufficient condition in Theorem 1.1 through differ-
ent method. They introduced the concept of gcd graph, which is graph with vertex set Zn and arcs
(x, y) if and only if gcd (x− y, n) is a divisor of n. He then proved that gcd graphs are all integral
graphs. It can be seen that the graphs mentioned in [7] are equivalent with the graphs mentioned in
[14]. In 2017, Mirafzal et. al. [11] proved that Cay(Z2n, (Z2n − {0}) − {n}) is an integral graph
for all integers n ≥ 2. Moreover, they found that all the eigenvalues of the adjacency matrix of the
graph are 2n− 2, 0, and −2 and their multiplicities are 1, n, n− 1, respectively.

There are many matrix representations of graphs, such as antiadjacency matrix. Antiadjacency
matrix of graph G, usually denoted by B, is a matrix B = J − A with J equals to n × n matrix
with all of its entries are 1 and A is the adjacency matrix of graph G [3]. Stin et al. [15] studied
about the eigenvalues of the antiadjacency matrix of cyclic directed prism graph. Murni et al. [12]
also researched about the antiadjacency matrix of inverse graph of Zn. They found several spectra
of inverse graph of Zn for few n. Oktradifa et al. [13] investigated the eigenvalues of antiadjacency
matrix of directed unicyclic helm graph.

There are not many research on the eigenvalues of the antiadjacency matrix of Cayley graphs
of groups. Thus, in this research, we are interested to explore the properties of the eigenvalues of
the antiadjacency matrix of Cayley graphs.

2. Preliminary Results

Matrix C is said to be a circulant matrix if C is a square matrix of size n × n which can be
represented as follows

C =


c0 c1 c2 ... cn−1
cn−1 c0 c1 ... cn−2
cn−2 cn−1 c0 ... cn−3

...
...

... . . . ...
c1 c2 c3 ... c0

 (1)

[8].

Below we present some well known results about circulant matrix.

Lemma 2.1. [2] [16] Adjacency matrix of Cay(Zn, S) is a circulant matrix.
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Theorem 2.1. [8] The eigenvalues of circulant matrix C given in Equation 1 are

λt =
n−1∑
j=0

cjξ
tj,

where ξ = exp(2πi/n) and t = 0, 1, 2, ..., n− 1.

We make the following observation now, which we will apply frequently in the next section.

Observation 2.1. If ξ = exp(2πi
n
), then

n−1∑
j=0

ξtj =

{
n, if t = 0 mod n,

0, if t = 1 mod n, 2 mod n, ..., (n− 1) mod n

Proof. For t = 0 mod n, we can write t as kn with k ∈ Z and so

n−1∑
j=0

ξkn·j =
n−1∑
j=0

exp(
2πi

n
knj) =

n−1∑
j=0

1kj = n.

For other values of t, t = kn+ c, with k an integer and c ∈ {1, ..., n− 1}. Observe that ξkn+c = ξc

and so
∑n−1

j=0 ξ
tj is a geometric series with ratio ξc, so

n−1∑
j=0

ξtj =
ξt·0(1− ξcn)

1− ξc

=
1(1− exp(2πi

n
cn))

1− ξc
= 0.

3. Main Results

In this section, we present our results about the eigenvalues of the antiadjacency matrix of
Cay(Zn, S). Not only that, we also present the relation between eigenvalues of the antiadjacency
matrix of Cay(Zn, S) and eigenvalues of two other matrix representations of Cayley graph of Zn,
which are the antiadjacency matrix of Cay(Zn, (Zn − {0}) − S) and the adjacency matrix of
Cay(Zn, S).

Before we go into the results, we introduce the following simple lemma, which is very essential
for our proof in the next two theorems.

Lemma 3.1. Antiadjacency matrix of Cay(Zn, S) is a circulant matrix.
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Proof. By Lemma 2.1, the adjacency matrix A of Cay(Zn, S) is a circulant matrix. Hence, matrix
A can be written in the following form

A =


a0 a1 a2 ... an−1
an−1 a0 a1 ... an−2
an−2 an−1 a0 ... an−3

...
...

... . . . ...
a1 a2 a3 ... a0

 .

By the definition of antiadjacency matrix, we have B can be written as

B = J − A =


1− a0 1− a1 1− a2 ... 1− an−1
1− an−1 1− a0 1− a1 ... 1− an−2
1− an−2 1− an−1 1− a0 ... 1− an−3

...
...

... . . . ...
1− a1 1− a2 1− a3 ... 1− a0

 .

Rewrite 1− ai as bi then

B =


b0 b1 b2 ... bn−1
bn−1 b0 b1 ... bn−2
bn−2 bn−1 b0 ... bn−3

...
...

... . . . ...
b1 b2 b3 ... b0

 .

Conclusively, B is a circulant matrix.

Now, with the aid of Lemma 3.1, we shall present our first theorem which gives the connec-
tion between the eigenvalues of the adjacency matrix of Cay(Zn, S) and the eigenvalues of the
antiadjacency matrix of Cay(Zn, S).

Theorem 3.1. If the spectrum of the adjacency matrix A of Cay(Zn, S) is

Spec(A) =
(
λ0 λ1 λ2 ... λk
m0 m1 m2 ... mk

)
,

then the spectrum of the antiadjacency matrix B of Cay(Zn, S) is

Spec(B) =

(
n− λ0 −λk −λk−1 ... −λ1 −λ0

1 mk mk−1 ... m1 m0 − 1

)
.

Proof. From Corollary 2.1, matrix A is a circulant matrix, so it can be written as

A =


a0 a1 a2 ... an−1
an−1 a0 a1 ... an−2
an−2 an−1 a0 ... an−3

...
...

... . . . ...
a1 a2 a3 ... a0

 .
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Thus, from Theorem 2.1, the eigenvalues of A are

λt =
n−1∑
j=0

ajξ
tj,

with ξ = exp(2πi
n
) and t = 0, 1, 2, .., n− 1.

From the definition of antiadjacency matrix B of Cay(Zn, S), matrix B can be written as

B = J − A =


1− a0 1− a1 ... 1− an−1
1− an−1 1− a0 ... 1− an−2

...
... . . . ...

1− a1 1− a2 ... 1− a0

 .

Since matrix B is circulant by Corollary 3.1, then by Theorem 2.1, the eigenvalues of B are

λ′t =
n−1∑
j=0

(1− aj)ξtj =
n−1∑
j=0

ξtj −
n−1∑
j=0

ajξ
tj

Therefore, we have

λ′t =
n−1∑
j=0

ξtj − λ′t, (2)

with ξ = exp(2πi
n
) and t = 0, 1, 2, . . . , n− 1. For t = 0, by using Lemma 2.1, Equation 2 becomes

λ′0 =
n−1∑
j=0

ξ0·j − λ0 = n− λ0.

On the other hand, for nonzero t, by Lemma 2.1, Equation 2 becomes

λ′t =
n−1∑
j=0

ξt·j − λt = 0− λt = −λt.

Hence, we obtain the following:

λ′t =

{
−λt, for t = 1, 2, ..., n− 1,

n− λt, for t = 0.

Therefore, an eigenvalue λ0 of matrix A corresponds to an eigenvalue n − λ0 of matrix B. For
other n− 1 eigenvalues of matrix A, λi, B has −λi as its eigenvalues. Thus,

Spec(B) =

(
n− λ0 −λk −λk−1 ... −λ1 −λ0

1 mk mk−1 ... m1 m0 − 1

)
.
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We present our another main result, which describes the relation between the eigenvalues of
the antiadjacency matrix of Cay(Zn, S) and Cay(Zn, (Zn − {0})− S).

Theorem 3.2. Let S be an inverse-closed subset of Zn−{0}. If the spectrum of the antiadjacency
matrix B of Cay(Zn, S) is

Spec(B) =

(
λ0 λ1 λ2 ... λk
m0 m1 m2 ... mt

)
,

then the spectrum of the antiadjacency matrix B′ of Cay(Zn, (Zn − {0})− S) is

Spec(B′) =
(
n+ 1− λ0 1− λk 1− λk−1 ... 1− λ1 1− λ0

1 mk mk−1 ... m1 m0 − 1

)
.

Proof. Let A be the adjacency matrix of Cay(Zn, S) where

A =


a0 a1 ... an−1
an−1 a0 ... an−2

...
... . . . ...

a1 a2 ... a0

 .

By the same method as in proof of Theorem 3.1, we can assume that the eigenvalues of B are

λ′t =
n−1∑
j=0

(1− aj)ξtj,

where t = 0, 1, . . . n− 1.
Let A′ be the adjacency matrix of Cay(Zn, (Zn−{0})−S). Observe that 0 /∈ (Zn−{0})−S

and 0 /∈ S, thus all entries in the main diagonal of both A′ and A are 0. For i = 1, 2, ..., n − 1,
note that i ∈ S if and only if i /∈ (Zn − {0}) − S. Consequently, the adjacency matrix of
Cay(Zn, (Zn − {0})− S) is

A′ =


a0 1− a1 ... 1− an−1

1− an−1 a0 ... 1− an−2
...

... . . . ...
1− a1 1− a2 ... a0

 ,

so the antiadjacency matrix of matriks Cay(Zn, (Zn − {0})− S) is

B′ = J − A′ =


1 1 ... 1
1 1 ... 1
...

... . . . ...
1 1 ... 1

−


a0 1− a1 ... 1− an−1
1− an−1 a0 ... 1− an−2

...
... . . . ...

1− a1 1− a2 ... a0

 .
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Thus,

B′ =


1− a0 a1 ... an−1
an−1 1− a0 ... an−2

...
... . . . ...

a1 a2 ... 1− a0

 .

From Lemma 3.1, B′ is also a circulant matrix. By Theorem 2.1, the eigenvalues of B′ are

λt = (1− a0)ξt·0 +
n−1∑
j=1

ajξ
tj = (1− a0) +

n−1∑
j=1

ajξ
tj

for t = 0, 1, 2, . . . , n− 1 and ξ = exp
(
2πi
n

)
. Then,

λ′t = (1− a0) +
n−1∑
j=1

(aj − 1)ξtj +
n−1∑
j=1

ξtj

= (1− a0) + (1− a0)ξt·0 +
n−1∑
j=0

(aj − 1)ξtj +
n−1∑
j=1

ξtj.

Since a0 is always zero, we have

λ′t = 2− λt +

(
n−1∑
j=0

ξtj − ξt·0
)
. (3)

Now, we divide the proof in two cases for t = 0 and t 6= 0. For t = 0, from Equation 3 and Lemma
2.1, we have

λ′0 = 2− λ0 + (n− 1) = n+ 1− λ0.

For t 6= 0, by Equation 3 and Lemma 2.1, we have

λ′t = 2− λt + (0− 1) = 1− λt.

Conclusively,

λ′t =

{
1− λt, for t = 1, 2, ..., n− 1,

n+ 1− λt, for t = 0.

Therefore, an eigenvalue λ0 of matrix B corresponds to an eigenvalue n+1−λ0 of matrix B′. For
n− 1 other eigenvalues λi of B, B′ has 1− λi as its eigenvalue, so we obtain

Spec(B′) =
(
n+ 1− λ0 1− λk 1− λk−1 ... 1− λ1 1− λ0

1 mk mk−1 ... m1 m0 − 1

)
.
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By using Theorem 1.1 and Theorem 3.1, we can easily give the necessary and sufficient condi-
tion such that the eigenvalues of the antiadjacency matrix of Cay(Zn, S) are integer.

Corollary 3.1. All the eigenvalues of the antiadjacency matrix of Cay(Zn, S) are integers if and
only if S is the union of some Sn(d).

As another application of Theorem 3.1, we give the following result regarding the eigenvalues
of the antiadjacency matrix of Cay(Zn, S) for the connection set S ⊆ Zn − {0} such that S ∪ {0}
is a subgroup of Zn.

Corollary 3.2. Let S be a subset of Zn−{0} such that S ∪ {0} is a subgroup of (Zn,+modn). The
spectrum of antiadjacency matrix B of Cay(Zn, S) is

Spec(B) =

(
n− |S| 1 −|S|

1 n− n
|S|+1

n
|S|+1

− 1

)
. (4)

Proof. Let m be the generating element of S ∪ {0}, where km = n, then S = {m, 2m, ..., (k −
1)m}. Let A be the adjacency matrix of Cay(Zn, S) where

A =


a0 a1 ... an−1
an−1 a0 ... an−2

...
... . . . ...

a1 a2 ... a0

 .

By Lemma 2.1, A is a circulant matrix. Moreover, ai = 1 if i ∈ S and ai = 0 otherwise. So, by
Theorem 2.1, the eigenvalues of A is

λt =
n−1∑
j=0

aj exp

(
2πi

n
tj

)

=
k−1∑
l=1

exp

(
2πi

km
tlm

)

=
k−1∑
l=0

exp

(
2πi

k
tl

)
− 1

By Lemma 2.1, λt = k − 1 if t = 0, k, 2k, ..., (m − 1)k and λt = −1 for other values of t. By
Theorem 3.1, the spectrum of the antiadjacency matrix B Cay(Zn, S) is

Spec(B) =

(
n− k + 1 1 1− k

1 n−m m− 1

)
Since n = km and |S| = k − 1, then the spectrum above can be written as

Spec(B) =

(
n− |S| 1 −|S|

1 n− n
|S|+1

n
|S|+1

− 1

)
.
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We close this section by giving an example of how to generally find the eigenvalues of the
antiadjacency matrix of Cay(Zn, S).
Example 3.1. Let n be a positive integer greater than 1. We illustrate how Theorem 3.1 is applied
to find the eigenvalues of the antiadjacency matrix of Cayley graphs of Zn. In this example, we
only demonstrate it for the case of Cay(Z2n, {1, n, 2n− 1}). Refer to Figure 1 for the case n = 4.

Consider Cay(Z2n, S), where S = {1, n, 2n−1}. Thus, the adjacency matrixA of Cay(Z2n, S)
is

0 1 2 ... n ... 2n− 2 2n− 1



0 1 0 ... 1 ... 0 1 0
1 0 1 ... 0 ... 0 0 1
0 1 0 ... 0 ... 0 0 2
...

...
... . . . ... . . . ...

...
...

0 0 0 ... 0 ... 0 1 2n− 2
1 0 0 ... 0 ... 1 0 2n− 1

.

Since the adjacency matrix of Cay(Z2n, S) is circulant, by Theorem 2.1, the eigenvalues are

λt = ξt·1 + ξt·n + ξt·(2n−1)

with ξ = exp
(
πi
n

)
and t = 0, 1, ..., 2n− 1. Then,

λt = exp

(
πit

n

)
+ exp

(
πitn

n

)
+ exp

(
πit(2n− 1)

n

)
= exp

(
πit

n

)
+ exp (πit) + exp

(
−πit
n

)
= 2 cos

(
πt

n

)
+ cos(πt)

Hence, the eigenvalues of A are

λt =

{
3, if t = 0

2 cos
(
πt
n

)
+ cos(πt) if t = 1, 2, ..., 2n− 1.

Hence, by Theorem 3.1, the eigenvalues of the antiadjacency matrix B are

λ′t =

{
n− 3, if t = 0

−
(
2 cos

(
πt
n

)
+ cos(πt)

)
if t = 1, 2, ..., 2n− 1.

Remark 3.1. By following the same step in the above example, we can find the formula of the
eigenvalues of the antiadjacency matrix of Cay(Zn, S) for any generating set S.
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Figure 1. Graph Cay(Z8, {1, 4, 7})

4. Conclusion

In this paper, we examined the relation between eigenvalues of the antiadjacency matrix of
Cay(Zn, S) and Cay(Zn, (Zn − {0}) − S). We also examined the relation between eigenvalues
of the antiadjacency matrix of Cay(Zn, S) and eigenvalues of the adjacency matrix of Cay(Zn, S).
Those results were mainly obtained by using the property of circulant matrix. We also obtained
that all of the eigenvalues of the antiadjacency matrix of Cay(Zn, S) are integer if and only if S is
the union of some Sn(d) = {a : 0 < a ≤ n, gcd(a, n) = d}.

Open Problem: What are the sufficient and necessary conditions for all the eigenvalues of the
antiadjacency matrix of Cayley graphs of other groups, such as dihedral group and permutation
group, to be an integer?
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