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Abstract

A caterpillar is a tree obtained from a path by attaching pendent vertices. The number of caterpillars
of size n is a well-known result. In this work we extend this result exploring the number of
caterpillars of size n together with the cardinality of the stable sets as well as the diameter. Three
closed formulas are presented, giving the number of caterpillars of size n with: (i) smaller stable
set of cardinality k, (ii) diameter d, and (iii) diameter d and smaller stable set of cardinality k.
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1. Introduction

We use here standard notation and terminology, as in [3]. All graphs considered in this work
are finite and simple, that is, with no loops or multiple edges. A graph G of order m and size n is
a graph where its vertex set V has cardinality m and its edge set E has cardinality n. A vertex v
of G is said to be a leaf when its degree is one, otherwise v is called an internal vertex. A graph
G is bipartite if V is the union of two independent sets or stable sets of G. If G is a connected
graph and u, v ∈ V , the distance between u and v, denoted by d(u, v), is the length (or size) of the
shortest path from u to v; the diameter of G is max{d(u, v) : u, v ∈ V }. For each v ∈ V , deg(v)
denotes the degree of v, i.e., the number of edges of G incident to v.

For every m ≥ 1, Pm denotes the path of order m, where P1
∼= K1 and for all m ≥ 2, Pm

is the tree with exactly two leaves, equivalently, the tree of order m with m − 2 interior vertices.
Paths can be seen as members of a larger family of trees, the family of caterpillars. A caterpillar
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is a tree of order m ≥ 3 with the property that the deletion of all its leaves results in a path; the
paths P1 and P2 are considered caterpillars in this work.

Harary and Schewnk [2] applied Pólya’s enumeration theorem to determine the number of non-
isomorphic caterpillars of order m, finding the generating function for the number of caterpillars.
A closed formula for the number of caterpillar of order m is 2m−4 + 2b

m−4
2
c. The present work

includes three enumerations of caterpillars, where the size of a caterpillar is combined with two
other parameters: the diameter and the cardinality of the smaller stable set. In Section 2 we
introduce the basic results needed to perform the calculations in the upcoming sections. In Section
3 we determine the number a(n, k) of caterpillars of size n with stable sets of cardinality k and
n + 1 − k; in Section 4 we study the number b(n, d) of caterpillars of size n and diameter d; we
conclude this work in Section 5, where we give the number c(n, d, k) of caterpillars of size n,
diameter d, and stable sets of cardinalities k and n+ 1− k.

In this work we use the symbol C(s, r) to represent the binomial coefficients, that is,

C(s, r) =
s!

r!(s− r)!
.

2. The Essential Results

Suppose that Z is a finite set of integers and S is the set of all sequences of length r formed
with elements of Z . Let S1 = {ai}ri and S2 = {bi}ri be elements of S , we say that S1 ≈ S2 if for
every i ∈ {1, 2, . . . , r} at least one of the following conditions hold:

(a) ai = bi,

(b) ai = br+1−i.

It is not difficult to see that ≈ is an equivalence relation on the set S . We are interested in
finding the number of equivalence classes induced by ≈. Let S ∈ S , the equivalence class of S
is denoted by [S]. If S = {ai}ri , its reverse sequence is defined as S−1 = {ar+1−i}ri . Thus, both
S and S−1 are in the same equivalence class. The sequence S is said to be reversible if S = S−1.
Therefore [S] = {S} if and only if S is reversible, otherwise [S] = {S, S−1}. Thus, using Pólya’s
enumeration theorem, we know that the number of equivalence classes induced by≈ on S , is half
of the addition of the total number of sequences and the total number of reversible sequences. This
is the technique used in this work to find the closed formulas for a(n, k), b(n, d), and c(n, d, k).

Consider the following equation, where each xi is an integer. In the following sections we use
the number of solutions to this equation to ascertain the specific amount of caterpillars considered
there.

x1 + x2 + · · ·+ xr = s. (1)

The next two theorems can be found in Chapter 3 of the combinatorics book by Allenby and
Slomson [1]. We present them omitting their proofs.
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Theorem 2.1. For each positive integer r and each nonnegative integer s, the number of nonneg-
ative integer solutions, (x1, x2, . . . , xr), of equation (1) is σ0(s, r) = C(s+ r − 1, r − 1).

Theorem 2.2. Let r, s be positive integers with s ≥ r. Then the number of positive integer solu-
tions, (x1, x2, . . . , xr), of equation (1) is σ(s, r) = C(s− 1, r − 1).

If (x1, x2, . . . , xr) is a solution of equation (1), where each xi > 0, then (x1, x2, . . . , xr) is a
partition of s; moreover, it is an ordered partition in the sense that any permutation of its entries
provides a solution of (1). In this work the word partition is used to indicate an ordered partition.

In the next theorems we use the following well-known property of the addition of binomial
coefficients.

Theorem 2.3. For all positive integers, j, t with j ≤ t,

C(t+ 1, j + 1) = C(t, j) + C(t− 1, j) + · · ·+ C(j, j).

If (x1, x2, . . . , xr) is a solution of equation (1), then it is an element of S , therefore it is
reversible when xi = xr+1−i for each i ∈ {1, 2, . . . , r}. We are interested in the number of
reversible solutions of equation (1). As we saw in the first two theorems, the number of solutions
of (1) depends on the nature of the xi; consequently, we need to consider two instances. Let ρ0(s, r)
denote the number of reversible nonnegative integer solutions, while ρ(s, r) designates the number
of reversible positive integer solutions. In order to determine ρ0(s, r) and ρ(s, r) we analyze two
cases based on the parity of r.

Suppose first that r is even. Since (x1, x2, . . . , xr) is reversible, we conclude that equation (1)
can be reduced to

x1 + x2 + · · ·+ x r
2
=
s

2
. (2)

But equation (2) has integer solutions if and only if s is even because each xi is an integer. There-
fore, ρ0(s, r) = ρ(s, r) = 0 when s is odd and r is even. Theorems 2.1 and 2.2 can be used to
determine ρ0(s, r) and ρ(s, r) when s is even. Thus, we know that ρ0(s, r) = C

(
s+r−2

2
, r−2

2

)
and

ρ(s, r) = C
(
s−2
2
, r−2

2

)
.

Suppose now that r is odd. Since (x1, x2, . . . , xr) is reversible, equation (1) can be written as

2(x1 + x2 + · · ·+ x r−1
2
) + x r+1

2
= s, (3)

which is equivalent to

x1 + x2 + · · ·+ x r−1
2

=
1

2

(
s− x r+1

2

)
. (4)

Note that the right side of equation (4) is an integer if and only if s and x r+1
2

have the same parity.
This implies that in addition to the nature of each xi we also need to consider the parity of s to
calculate the value of ρ0(s, r) and ρ(s, r). We analyze now the four different scenarios.
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(a) When s is even and each xi is a nonnegative integer. Since each xi is a nonnegative integer,
we have that x r+1

2
∈ {0, 2, . . . , s} = {2j : 0 ≤ j ≤ s

2
}. Let x r+1

2
= 2j for some j ∈

{0, 1, . . . , s
2
}, then equation (4) can be written as

x1 + x2 + · · ·+ x r−1
2

=
s

2
− j. (5)

The number of nonnegative integer solutions of this last equation can be calculated, using
Theorem 2.1, to be equal to C

(
s
2
− j + r−3

2
, r−3

2

)
. Seeing that j ∈ {0, 1, . . . , s

2
}, Theorem

2.3 tells us that

ρ0(s, r) =

s
2∑

j=0

C

(
s

2
− j + r − 3

2
,
r − 3

2

)
= C

(
s

2
+
r − 1

2
,
r − 1

2

)
.

(b) When s is even and each xi is a positive integer. Considering that each xi is a positive
integer, we have that x r+1

2
∈ {2, 4, . . . , s}, but equation (4) has positive integer solutions

if and only if 1
2
(s − x r+1

2
) ≥ r−1

2
, which is equivalent to say that x r+1

2
≤ s − r + 1, in

other terms, x r+1
2
∈ {2, 4, . . . , s − r + 1} = {2j : 1 ≤ j ≤ r−1

2
}. If x r+1

2
= 2j for some

j ∈ {1, 2, . . . , s
2
− r−1

2
}, then the number of positive integer solutions of equation (5) is,

determined using Theorem 2.2, to be C
(
s
2
− j − 1, r−1

2
− 1
)
. Using Theorem 2.3 we get

ρ(s, r) =

s−r+1
2∑

j=1

C

(
s

2
− j − 1,

r − 3

2

)
= C

(
s− 2

2
,
r − 1

2

)
.

(c) When s is odd and each xi is a nonnegative integer. Since each xi is a nonnegative integer
and both x r+1

2
and s have the same parity, we get that x r+1

2
∈ {1, 2, . . . , s} = {2j + 1 : 0 ≤

j ≤ s−1
2
}. Let x r+1

2
= 2j − 1 for some j ∈ {0, 1, . . . , s−1

2
}, then equation (4) can be written

as

x1 + x2 + · · ·+ x r−1
2

=
s− 1

2
− j. (6)

The number of nonnegative integer solutions of equation (6) can be calculated, using Theo-
rem 2.1, to be equal to C

(
s−1
2
− j + r−3

2
, r−3

2

)
. Based on the fact that j ∈ {0, 1, . . . , s−1

2
},

Theorem 2.3 tells us that

ρ0(s, r) =

s−1
2∑

j=0

C

(
s− 1

2
− j + r − 3

2
,
r − 3

2

)
= C

(
s− 1

2
+
r − 1

2
,
r − 1

2

)
.

(d) When s is odd and each xi is a positive integer. As in the previous cases, x r+1
2

and s have the
same parity; the fact that each xi is a positive integer implies that the right side of equation
(6) must be at least equal to the number of terms in this equation, i.e., s−1

2
− j ≥ r−1

2
,
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or equivalently, s−r
2
≥ j. Consequently, x r+1

2
∈ {1, 3, . . . , s−r

2
}. If x r+1

2
= 2j + 1 for

some j ∈ {0, 1, . . . , s−r
2
}, then the number of positive integer solutions of equation (6)

is determined by Theorem 2.2 to be C
(
s−1
2
− j − 1, r−1

2
− 1
)
= C

(
s−3
2
− j, r−3

2

)
. Using

Theorem 2.3 we get

ρ(s, r) =

s−r
2∑

j=0

C

(
s− 3

2
− j, r − 3

2

)
= C

(
s− 1

2
,
r − 1

2

)
.

Thus we have proven the next two theorems.

Theorem 2.4. For each positive integer r and each nonnegative integer s, the number of reversible
nonnegative integer solutions, (x1, x2, . . . , xr), of equation (1) is:

i. ρ0(s, r) = 0 when s is odd and r is even,

ii. ρ0(s, r) = C
(
s
2
+ r−2

2
, r−2

2

)
when both s and r are even,

iii. ρ0(s, r) = C
(
s
2
+ r−1

2
, r−1

2

)
when s is even and r is odd,

iv. ρ0(s, r) = C
(
s−1
2

+ r−1
2
, r−1

2

)
when both s and r are odd.

Theorem 2.5. Let r, s be positive integers with s ≥ r. Then the number of reversible positive
integer solutions, (x1, x2, . . . , xr), of equation (1) is:

i. ρ(s, r) = 0 when s is odd and r is even,

ii. ρ(s, r) = C
(
s−2
2
, r−2

2

)
when both s and r are even,

iii. ρ(s, r) = C
(
s−2
2
, r−1

2

)
when s is even and r is odd,

iv. ρ(s, r) = C
(
s−1
2
, r−1

2

)
when both s and r are odd.

Suppose that s is even. If r is even, then r ∈ {2, 4, . . . , s} and the sum of all values of ρ(s, r)

is
∑ s−2

2
i=0 C

(
s−2
2
, i
)
= 2

s−2
2 . Similarly, if r is odd, then r ∈ {1, 2, . . . , s − 1} and the sum of all

values of ρ(s, r) is
∑ s−2

2
i=0 C

(
s−2
2
, i
)
= 2

s−2
2 too. Therefore,

s∑
r=1

ρ(s, r) = 2

s−2
2∑

i=0

C

(
s− 2

2
, i

)
= 2

s−2
2 .
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3. First Enumeration: Stable Sets

As we mentioned in the Introduction, we are aware of only one enumeration of caterpillars,
which was performed by Harary and Schwenk [2], where they determined the number of caterpil-
lars of order m ≥ 3 to be cm = 2m−4 +2b

m−4
2
c. The sequence formed by the consecutive values of

cp is A005418 in OEIS. If instead of using the order of the caterpillars we use the size, the formula
given in [2] can be written for every n ≥ 3 as:

c(n) = 2n−3 + 2b
n−3
2
c.

In Table 1 we show the first values of c(n) for 3 ≤ n ≤ 20.

Table 1. Number of caterpillars of size n.

n 1 2 3 4 5 6 7 8 9 10
c(n) 1 1 2 3 6 10 20 36 72 136
n 11 12 13 14 15 16 17 18 19 20
c(n) 272 528 1056 2080 4160 8256 16512 32896 65792 131328

Let G be a caterpillar of size n ≥ 1 where the stable sets are A = {u1, u2, . . . , uk} and
B = {v1, v2, . . . , vl}. Without loss of generality, we assume that k ≤ l. We want to determine
the number a(n, k) of non-isomorphic caterpillars of size n such that the smallest stable set has
cardinality k. This implies that 1 ≤ k ≤ n

2
when n is even and 1 ≤ k ≤ n+1

2
when n is odd.

Consequently,

dn
2
e∑

k=1

a(n, k) = c(n).

Caterpillars have a characteristic that distinguish them from any other type of tree, they can be
drawn in such a way that the vertices can be organized on two parallel lines (or rows), one for each
stable set, and the edges connecting these vertices, represented by line segments between the two
rows, never cross. We refer to this representation of a caterpillar as its 2-row representation. In
Figure 1 we show the 10 non-isomorphic caterpillars of size 6, organized in levels according to the
three possible values of k. The elements of the stable set A are in black. On each caterpillar, the
leftmost elements are u1 and v1, while the rightmost elements are uk and vl. The number on top of
each black vertex is its degree.

If deg(ui) = di, then every caterpillar can be described by the sequence d1, d2, . . . , dk, where
each di ≥ 1 and d1+d2+· · ·+dk = n. But the same caterpillar can also be described by the reverse
sequence, that is, dk, dk−1, . . . , d1. Thus, the problem of counting non-isomorphic caterpillars of
size n which smaller stable set has k elements, is equivalent to count sequences of length k which
entries are positive integers where the addition of all entries equals n and the sequence and its
reverse are considered the same. Note that each of these sequences is a solution of equation (1)
with r = k and s = n. Since each di > 0, the values of ρ(n, k) obtained in Theorem 2.5 are used
to calculate a(n, k).
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4 1 1 1 4 1 3 1 2 3 2 1 2 3 1 2 2 2

5 1 4 2 3 3

6

Figure 1. All non-isomorphic caterpillars of size 6

Theorem 3.1. The number a(n, k) of non-isomorphic caterpillars of size n which smaller stable
sets has cardinality k ≤ bn−1

2
c is 1

2
(C(n− 1, k − 1) + ρ(n, k)).

Proof. Let A = {u1, u2, . . . , uk} and B = {v1, v2, . . . , vl} be the stable sets of a caterpillar of size
n, where k ≤ l, which is assumed to be depicted using the 2-row representation. Suppose that for
each i ∈ {1, 2, . . . , k}, deg(ui) = xi. Since caterpillars are trees and trees are bipartite graphs, the
following equation holds:

x1 + x2 + · · ·+ xk = n, (7)

which has the structure of equation (1).
If (x1, x2, . . . , xk) is a solution of (7), then its reverse sequence (xk, xk−1, . . . , x1) is also a

solution. Thus every caterpillar is associated to two of these solutions. Since some of these so-
lutions are reversible, the number of non-isomorphic caterpillars of size n with smaller stable set
of cardinality k is given by half of the sum of the number of solutions of (7) and the number of
reversible solutions.

The number of positive integer solutions of (7) is C(n− 1, k− 1) and the number of reversible
solutions is ρ(n, k). Therefore, a(n, k) = 1

2
(C(n− 1, k − 1,+ρ(n, k)).

When n is even, the stable sets of any caterpillar of size n have different cardinality; this
implies that Theorem 3.1 tells us the exact value of a(n, k). The same occurs when n is odd and
k 6= n+1

2
. However the situation is different when n is odd and k = n+1

2
. This case is different

of the other cases because both stable sets have the same cardinality, this means that there are up
to four solutions of equation (1) that can represent the same graph. To explain the problem, let us
consider the three caterpillars of size n = 9 shown in Figure 2.

Since both stable sets have the same cardinality, each of them can be selected to be A. This im-
plies that each caterpillar can be associated with up to four partitions of n. ForG1 we have four par-
titions: (2, 1, 3, 2, 1), (1, 2, 3, 1, 2), (1, 3, 1, 2, 2), and (2, 2, 1, 3, 1), which are non-reversible. For
G2 we have two different reversible partitions: (3, 1, 1, 1, 3) and (1, 1, 5, 1, 1). For G3 we also have
two partitions but they are not reversible: (1, 1, 3, 1, 3) and (3, 1, 3, 1, 1).
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G1 :

1 3 1 2 2

2 1 3 2 1

G2 :

1 1 5 1 1

3 1 1 1 3

G3 :

3 1 3 1 1

1 1 3 1 3

Figure 2. Two-row representation of some caterpillars of size 9

Even when graphs are not geometrical objects, consider the following rigid representations of
G1, G2, and G3 depicted in Figure 3.

G1 : G2 :

180◦

G3 :

180◦
.

Figure 3. Rigid representations to the caterpillars G1, G2, and G3

We may observe that G1 his asymmetric, while G2 and G3 are symmetric; in the case of G2

we may rotate the figure 180◦ around a horizontal axis, G3 may be rotated 180◦ around a central
point. Thus, the family of all caterpillars of odd size n with stable sets of cardinality k = n+1

2

can be partitioned into three classes according to these symmetries and the amount of partitions
of n associated with them. We use the following notation: [G1] is the set that includes all the
caterpillars associated with four different partitions, [G2] includes all the caterpillars associated
with two different reversible partitions, and [G3] includes all the caterpillars associated with two
different but not reversible partitions. Consequently, to know the value of a

(
n, n+1

2

)
we need to

determine the cardinality of these three sets. Based on the fact that the equation d1+d2+· · ·+dk =
n has C(n − 1, k − 1) solutions, we just need to find the cardinalities of [G2] and [G3]. But the
partitions associated to the elements in [G2] are reversible, hence, we just need to determine the
cardinality of [G3], because the cardinality of [G2] is given by ρ(n, k).

Suppose that P = (p1, p2, . . . , pk) is a partition of n into k parts such that for every 1 ≤ i ≤
k − 1, pi ≥ pi+1. A Ferrer diagram is a pictorial representation of P that uses k rows of dots,
where the number of dots on the ith row is pi. In this way, the number of dots per row does not
increase as we go from any row to the one below it. Since our partitions of n not necessarily satisfy
di ≥ di+1, we cannot use Ferrer diagrams but we can use the same principle, that is, the ith row
on the diagram contains di dots. Consider the partitions (2, 1, 3, 2, 1) and (1, 3, 1, 2, 2) of n = 9,
because they have the same parts, they correspond to the same standard partition; in Figure 4 we
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show the associated Ferrer diagram together with their ordered diagram and a matrix representation
of (1, 3, 1, 2, 2).

Ferrer diagram (2, 1, 3, 2, 1) (1, 3, 1, 2, 2) Matrix

Figure 4. Different dot diagrams of the same partition of 9

Recall that when D = (d1, d2, . . . , dk) is a solution of equation (1), D is an ordered partition
of n. Let M be a 0-1 matrix of order k× k, where k = n+1

2
, such that for every 1 ≤ i ≤ k, the ith

row of M has exactly di nonzero entries that occupy consecutive cells and the nonzero entries, on
each row, are organized according to:

1. the last d1 entries on row 1 are nonzero.

2. for each 2 ≤ i ≤ k, the last nonzero entry on row i occupies a cell on the same column that
contains the first nonzero entry on the previous row.

As an example of this representation, the matrices associated with the caterpillars G1, G2, and G3

are shown below.

M1 =

1 0 0 0 0

1 1 0 0 0

0 1 1 1 0

0 0 0 1 0

0 0 0 1 1

M2 =

1 1 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 1 1

M3 =

1 1 1 0 0

0 0 1 0 0

0 0 1 1 1

0 0 0 0 1

0 0 0 0 1

The symmetries of the rigid representations of the graph can be also seen within the corre-
sponding matrix. Since our goal is to determine the number of caterpillars associated with exactly
two non-reversible partitions, we concentrate our attention on matrices like M3. First, observe that
in the example, we have that M3 = M t

3, that is, the matrix M3 is symmetric. In addition, M t is
the matrix associated with the same caterpillar when the stable sets are swapped and the degrees of
the vertices are read from right to left. Another property that we can observe in all these matrices
is that there is only one nonzero entry on each descending diagonal. Thus, the task is to find out
the number of symmetric 0-1 matrices of order k × k such that the cell m1,1 is occupied by a zero,
mk,1 = m1,k = 1, and on each row, the 1’s are in consecutive cells.

85



www.ijc.or.id

On the number of caterpillars | C. Barrientos

If we outline the distribution of 1’s on any of these matrices, a path is revealed, which can be
understood as a symmetric path on the x-y plane from (0, 0) to (k − 1, k − 1), where every step
of the path is a move one unit to the right or one unit up. Since the symmetry is with respect to
the main diagonal of the matrix, we can calculate the number of symmetric paths from (0, 0) to
(k−1, k−1) by adding the integers C(k−1, i) over all the possible values of i, that is, the number
of these paths from (0, 0) to (k− i, i). Since

∑k−1
i=0 C(k−1, i) = 2k−1, we can say that the number

of symmetric 0-1 matrices of order k × k satisfying the conditions is 2k−1. Therefore, the number
of caterpillars of size n associated with exactly two non-reversible partitions is 2k−1.

Thus, when n is odd and k = n+1
2

, a(n, k) = 1
4
(C
(
n− 1, k− 1

)
+ ρ(n, k)+ 2k−1). In this way

we have proven the following theorem.

Theorem 3.2. When n is odd and k = n+1
2

, the number of non-isomorphic caterpillars of size n
with stable sets of cardinality k is a(n, k) = 1

4
(C
(
n− 1, k − 1

)
+ ρ(n, k) + 2k−1).

In Table 2 we show the first values of a(n, k), for every 1 ≤ n ≤ 20 and 1 ≤ k ≤ 10. Note that
the entries in the last column correspond to the entries of c(n) in Table 1. We conclude this section
verifying this last statement.

Table 2. Number of caterpillars of size n with smaller stable set of cardinality k.

n\k 1 2 3 4 5 6 7 8 9 10 Total
1 1 1
2 1 1
3 1 1 2
4 1 2 3
5 1 2 3 6
6 1 3 6 10
7 1 3 9 7 20
8 1 4 12 19 36
9 1 4 16 28 23 72

10 1 5 20 44 66 136
11 1 5 25 60 110 71 272
12 1 6 30 85 170 236 528
13 1 6 36 110 255 396 252 1056
14 1 7 42 146 365 651 868 2080
15 1 7 49 182 511 1001 1519 890 4160
16 1 8 56 231 693 1512 2520 3235 8256
17 1 8 64 280 924 2184 4032 5720 3299 16512
18 1 9 72 344 1204 3108 6216 9752 12190 32896
19 1 9 81 408 1548 4284 9324 15912 21942 12283 65792
20 1 10 90 489 1956 5832 13608 25236 37854 46252 131328

86



www.ijc.or.id

On the number of caterpillars | C. Barrientos

Suppose that n is even and k ∈ {1, 2, . . . , n
2
}. Then,

n
2∑

k=1

a(n, k) =

n
2∑

k=1

1

2
(C(n− 1, k − 1) + ρ(n, k))

=
1

2

n
2∑

k=1

1

2
C(n− 1, k − 1) +

1

2

n
2∑

k=1

ρ(n, k)

=
1

2
· 1
2

n−2∑
j=0

C(n− 1, j) +
1

2

n−2
2∑

i=0

C
(n
2
, i
)

=
1

2
· 2n−2 + 1

2
· 2

n−2
2

= 2n−4 + 2
n−4
2 = c(n).

Since the case n odd can be proven similarly, we omit its proof.

4. Second Enumeration: Diameter

Let G be a caterpillar of size n and diameter d. If v0, v1, . . . , vd are the consecutive vertices of
a path of maximum length in G, then v1, v2, . . . , vd−1 are internal vertices, thus

d+
d−1∑
i=1

(deg(vi)− 2) = n

d−1∑
i=1

(deg(vi)− 2) = n− d.

To avoid any confusion with the terminology, we refer to v0 and vd as the extreme vertices and
pendent vertex to any other vertex of degree 1. If for each i ∈ {1, 2, . . . , d− 1}, xi = deg(vi)− 2,
then xi is the number of pendent vertices attached to vi. Therefore,

x1 + x2 + · · ·+ xd−1 = n− d. (8)

In this section we want to determine the number b(n, k) of non-isomorphic caterpillars of size
n and diameter d. As we did in Section 3, we start counting the number of solutions of (8).
Note that now each xi is a nonnegative integer because deg(vi) could be equal to 2, implying
that xi = 0. Based on the result in Theorem 2.1, we know that the number of nonnegative in-
teger solutions of (8) is C(n − d + d − 2, d − 2) = C(n − 2, d − 2). As in the previous case,
if (x1, x2, . . . , xd−1) is a solution of (8) where each xi ≥ 0, then (xd−1, xd−2, . . . , x1) is also a
solution of (8). This indicates that we need to find the number of reversible solutions of this
equation. But this number can be obtained using Theorem 2.4 with s = n − d and r = d − 1.
Therefore, the number b(n, d), of non-isomorphic caterpillars of size n and diameter d is given by
1
2
(C(n− 2, d− 2) + ρ0(n− d, d− 1)). We summarize this result in the following theorem.
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Theorem 4.1. The number b(n, d), of non-isomorphic caterpillars of size n and diameter d is:

i. 1
2
C(n− 2, d− 2) when n is even and d is odd,

ii. 1
2

(
C(n− 2, d− 2) + C

(
n−3
2
, d−3

2

))
when both n and d are odd,

iii. 1
2

(
C(n− 2, d− 2) + C

(
n−2
2
, d−2

2

))
when both n and d are even,

iv. 1
2

(
C(n− 2, d− 2) + C

(
n−3
2
, d−2

2

))
when n is odd and d is even.

As an example for this theorem, in Figure 5 we exhibit the 20 caterpillars of size 7 classified
by their diameter. In addition, in Table 3 we show the first values of b(n, d) for 2 ≤ n ≤ 20
and 2 ≤ d ≤ dn

2
e. The remaining values of b(n, d) can be easily obtained using the fact that

b(n, d) = b(n, n + 2 − d). We must also mention here that the sequence formed by the values of
b(n, d) form the rows of Losanitsch’s triangle, that is, the sequence A034851 in OEIS.

Figure 5. Caterpillars of size 7 classified by their diameter

5. Third Enumeration: Stable Sets and Diameter

In this last section we combine the ideas of the two previous sections by determining the num-
ber of caterpillars of size n, diameter d, and smaller stable set of cardinality k, this number is
denoted by c(n, d, k). As it is expected, this enumeration is more complicated that the previous
calculations; however, the technique is essentially the same: we find first the number of ways to
distribute the pendent vertices among the internal vertices, we add to this amount the number of
reversible distributions, and we divide this sum by two.

Let v0, v1, . . . , vd be the consecutive vertices of a path P of maximum length in a caterpillar of
size n, then there are n − d pendent vertices that need to be attached to the interior vertices. For
each i ∈ {1, 2, . . . , d− 1}, the number of pendent vertices attached to vi is x i

2
when i is even and

y i+1
2

when i is odd. Note that in any caterpillar of size n and diameter d, the amount of interior
vertices with an even index is d−2

2
when d is even and d−1

2
when d is odd, and the amount of interior

vertices with an odd index is d
2

when d is even and d−1
2

when d is odd.
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Table 3. Number of caterpillars of size n and diameter d.

n\d 2 3 4 5 6 7 8 9 10 11 Total
2 1 1
3 1 2
4 1 1 3
5 1 2 6
6 1 2 4 10
7 1 3 6 20
8 1 3 9 10 36
9 1 4 12 19 72

10 1 4 16 28 38 136
11 1 5 20 44 66 272
12 1 5 25 60 110 126 528
13 1 6 30 85 170 236 1056
14 1 6 36 110 255 395 472 2080
15 1 7 42 146 365 651 868 4160
16 1 7 49 182 511 1001 1519 1716 8256
17 1 8 56 231 693 1512 2520 3225 16512
18 1 8 64 280 924 2184 4032 5720 6470 32896
19 1 9 72 344 1204 3108 6216 9752 12190 12283
20 1 9 81 408 1548 4284 9324 15912 21942 24310 131328

Furthermore, for every n ≥ 2, there is only one caterpillar of size n and diameter d = 2, this
tree is the star Sn

∼= K1,n; thus, c(n, 2, 1) = 1. In a caterpillar of diameter d = 3, the n − 3
pendent vertices are distributed among the two interior vertices, each possible distribution corre-
sponds to a partition of n − 3 into two parts. If we consider that one of these parts can be zero,
then there are n−2

2
of these partitions when n is even and n−1

2
when n is odd. Therefore, when n

is even, for each k ∈ {2, 3, . . . , n
2
}, c(n, 3, k) = 1; when n is odd, for each k ∈ {2, 3, . . . , n+1

2
},

c(n, 3, k) = 1. Consequently, starting at this point, we assume that d ≥ 4. We analyze two major
cases that depend of the parity of the parameter d. In both cases, the parameter f is the number of
pendent vertices attached to the interior vertices with odd index and the parameter g is the number
of pendent vertices attached to the interior vertices with even index.

Case 1: When d is odd. The following equations must be satisfied by the xi and yi:

x1 + x2 + · · ·+ x d−1
2

= f, (9)

y1 + y2 + · · ·+ y d−1
2

= g. (10)

For the path P that contains the vertices v0, v1, . . . , vd, there is an automorphism φ that trans-
forms vi into vd−i, that is, for each odd index i, there exists an even index j, such that φ(vi) = vj .
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This implies that all the possible distributions of the pendent vertices are included in the cases
where f ∈ {0, 1, . . . , bn−d

2
c}. Since the parity of n − d depends on the parity of n, we consider

two subcases:
Subcase 1.a: When n is even. Thus, f ∈ {0, 1, . . . , n−d−1

2
} and g ∈ {n − d, n − d −

1, . . . , n−d+1
2
}. Consequently, the cardinality of the smaller stable set is k = d+1

2
+ f , i.e.,

k ∈ {d+1
2
, d+3

2
, . . . , n

2
}.

Since there is no automorphism of P that transforms a vertex with an even (or odd) index into
another vertex with an even (or odd) index, it is impossible to have a reversible distribution of
the pendent vertices. Thus, c(n, d, k) is obtained by the product of the number of solutions of
equations (9) and (10), that is, for each k = d+1

2
+ f , i.e., for each k ∈ {d+1

2
, d+3

2
, . . . , n

2
},

c(n, d, k) = σ0
(
f, d−1

2

)
σ0
(
g, d−1

2

)
.

Since k = d+1
2

+ f and g = n− d− f , this equation can be written in the following form

c(n, d, k) = σ0
(
k − d+1

2
, d−1

2

)
σ0
(
n− k − d−1

2
, d−1

2

)
.

Using the formula for σ0(s, r) in Theorem 2.1, we can reduce this last expression into

c(n, d, k) = C
(
k − 2, d−3

2

)
C
(
n− k − 1, d−3

2

)
.

Subcase 1.b: When n is odd. Now, f ∈ {0, 1, . . . , n−d
2
} and g ∈ {n−d

2
, n−d

2
− 1, . . . , 0}. Thus,

k ∈ {d+1
2
, d+3

2
, . . . , n+1

2
}. The only difference with the previous case occurs when f = g = n−d

2
,

i.e., when k = n+1
2

. Suppose that f = n−d
2

and that (x1, x2, . . . , x d−1
2
) is a solution of equation (9),

therefore (x d−1
2
, x d−3

2
, . . . , x1) is a solution of (10). In other terms,

x1, x d−1
2
, x2, x d−3

2
, . . . , x2, x d−3

2
, x1, x d−1

2

is a reversible distribution of the pendent vertices among all the interior vertices. Thus,

c
(
n, d, n+1

2

)
= 1

2

(
σ0
(
n−d
2
, d−1

2

)
σ0
(
n−d
2
, d−1

2

)
+ σ0

(
n−d
2
, d−1

2

))
.

Hence, when n is odd and k = n+1
2

,

c
(
n, d, n+1

2

)
= 1

2

[(
C
(
n−3
2
, d−3

2

))2
+ C

(
n−3
2
, d−3

2

)]
.

We summarize these results in the next theorem.

Theorem 5.1. Let d ≥ 5 be an odd integer, k ≥ d+1
2

, and n ≥ d. The number of nonisomorphic
caterpillars of size n, diameter d, and smaller stable set of cardinality k is:

i. c(n, d, k) = 1
2

[(
C
(
n−3
2
, d−3

2

))2
+ C

(
n−3
2
, d−3

2

)]
when n is odd and k = n+1

2
.

ii. c(n, d, k) = C
(
k − 2, d−3

2

)
C
(
n− k − 1, d−3

2

)
otherwise.
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Case 2: When d is even. The major difference with Case 1 is that now, in any caterpillar of even
diameter, the path P contains more vertices with an even index than vertices with an odd index.
Anyway, the distributions of the pendent vertices are associated to the solutions of the following
equations:

x1 + x2 + · · ·+ x d
2
= f, (11)

y1 + y2 + · · ·+ y d−2
2

= g. (12)

The fact that these equations do not have the same number of terms implies that f ∈ {0, 1, . . . , n−
d} and g ∈ {n− d, n− d− 1, . . . , 0}. We must observe that in this case, there is an automorphism
of P that transform the vertex vi into vd−i; because d is even, i and d − i have the same parity. In
other words, a reversible solution of (11), combined with a reversible solution of (12), produces a
reversible distribution of the pendant vertices among all the interior vertices. Then,

c(n, d, k) =
1

2

[
σ0

(
f,
d

2

)
σ0

(
g,
d− 2

2

)
+ ρ0

(
f,
d

2

)
ρ0

(
g,
d− 2

2

)]
. (13)

The parity of n plays an important part in the number of solutions of equations (11) and (12).
Suppose first that f < n−d. When f or n−d− f − 1 pendent vertices are attached to the internal
vertices with odd index, the resulting graph has stable sets of cardinality n− d

2
− f − 1 and d

2
+ f .

The only exception to this fact occurs when n is odd and f = n−d−1
2

, where both stable sets have
cardinality k = n+1

2
.

Theorem 5.2. Let d ≥ 4 be an even integer and k = n+1
2

where n ≥ d is an odd integer. Then, the
number of nonisomorphic caterpillars of size n, diameter d, and smaller stable set of cardinality k
is:

i. when n ≡ 1(mod 4) and d ≡ 0(mod 4)
c(n, d, k) = 1

2

[
C
(
n−3
2
, d−2

2

)
C
(
n−3
2
, d−4

2

)
+ C

(
n−5
4
, d−4

4

)
C
(
n−5
4
, d−4

4

)]
.

ii. when n ≡ 1(mod 4) and d ≡ 2(mod 4)
c(n, d, k) = 1

2

[
C
(
n−3
2
, d−2

2

)
C
(
n−3
2
, d−4

2

)
+ C

(
n−5
4
, d−4

4

)
C
(
n−5
4
, d−6

4

)]
.

iii. when n ≡ 3(mod 4)
c(n, d, k) = 1

2
C
(
n−3
2
, d−2

2

)
C
(
n−3
2
, d−4

2

)
.

Proof. Since k = n+1
2

, the value of f in (11) is n−d−1
2

and the value of g in (12) is n−d+1
2

. Thus,

σ0
(
f, d

2

)
= σ0

(
n−d−1

2
, d
2

)
= C

(
n−d−1

2
+ d

2
− 1, d

2
− 1
)
= C

(
n−3
2
, d−2

2

)
and

σ0
(
g, d−2

2

)
= σ0

(
n−d+1

2
, d−2

2

)
= C

(
n−d+1

2
+ d−2

2
− 1, d−2

2
− 1
)
= C

(
n−3
2
, d−4

2

)
.

If n ≡ 1(mod 4) and d ≡ 0(mod 4), then

ρ0
(
f, d

2

)
= ρ0

(
n−d−1

2
, d
2

)
= C

(
n−d−1

4
+ d

4
− 1, d

4
− 1
)
= C

(
n−5
4
, d−4

4

)
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and

ρ0
(
g, d−2

2

)
= ρ0

(
n−d+1

2
, d−2

2

)
= C

(
n−d−1

4
+ d−4

4
, d−4

4

)
= C

(
n−5
4
, d−4

4

)
.

Based on these calculations and equation (13), we get that in this case,

c(n, d, k) = 1
2

[
C
(
n−3
2
, d−2

2

)
C
(
n−3
2
, d−4

2

)
+ C

(
n−5
4
, d−4

4

)
C
(
n−5
4
, d−4

4

)]
.

The remaining cases can be proven in a similar way, so we omit their proofs. We just need to
mention that in case (iii), the associated values of ρ0 are equal to zero.

Suppose now that f = n− d and g = 0, the graphs obtained have stable sets of cardinalities d
2

and n+ 1− d
2
, .i.e., they are caterpillars of size n, diameter d with smaller stable set of cardinality

k = d
2
. Therefore, the value of c(n, d, k) can be easily found using equation (13) and the fact that

σ0
(
0, d−2

2

)
= ρ0

(
0, d−2

2

)
= 1, so we omit the proof.

Theorem 5.3. Let d ≥ 4 be an even integer, and n ≥ d. If k = d
2
, then the number of nonisomor-

phic caterpillars of size n, diameter d, and smaller stable set of cardinality k is:

i. c(n, d, k) = 1
2

[
C
(
n− d

2
− 1, d

2
− 1
)
+ C

(
n
2
− d+4

4
, d−4

4

)]
when n is even and d ≡ 0(mod 4).

ii. c(n, d, k) = 1
2

[
C
(
n− d

2
− 1, d

2
− 1
)
+ C

(
n
2
− d+2

4
, d−2

4

)]
when n is even and d ≡ 2(mod 4).

iii. c(n, d, k) = 1
2
C
(
n− d

2
− 1, d

2
− 1
)

when n is odd and d ≡ 0(mod 4).

iv. c(n, d, k) = 1
2

[
C
(
n− d

2
− 1, d

2
− 1
)
+ C

(
n−1
2
− d+2

4
, d−2

4

)]
when n is odd and d ≡ 2(mod 4).

Now we analyze the general case. As we mentioned before, a caterpillar of size n, diameter d
even, with stable sets of cardinalities d

2
+ f and n− d

2
− f − 1 for every f ∈ {0, 1, . . . , n− d− 1},

except in the case where n is odd and f = n−d−1
2

, that was analyzed, independently, in Theorem
5.2.

In view of the fact that d is even, we know that the path P of maximum length has d+2
2

vertices
with even index and d

2
vertices with odd index. Let f ∈ {0, 1, . . . , bn−d−2

2
c}, if f vertices are

attached to the interior vertices with odd index, then the stable sets have cardinalities d+2
2

+ f and
n− d

2
− f ; if instead of attaching f we attach n− d− f − 1 pendent vertices, the stable sets have

cardinalities n − d
2
− f and d+2

2
+ f , respectively. Since f ≤ bn−d−2

2
c, we know for sure that

d+2
2

+ f < n − d
2
− f . This implies that for each k ≥ d+2

2
, it is enough to consider the values of

f in the set {0, 1, . . . , bn−d−2
2
c}. Consequently, if k = d+2

2
+ f , with f ∈ {0, 1, . . . , bn−d−2

2
c}, we

get that

c(n, d, k) =
1

2

[
σ0

(
f,
d

2

)
σ0

(
n− d− f, d− 2

2

)
+ ρ0

(
f,
d

2

)
ρ0

(
n− d− f, d− 2

2

)
+ σ0

(
n− d− f − 1,

d

2

)
σ0

(
f + 1,

d− 2

2

)
+ ρ0

(
n− d− f − 1,

d

2

)
ρ0

(
f + 1,

d− 2

2

)]
Since f = k − d+2

2
, the factors in this formula can be written in terms of n, d, and k.
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σ0

(
f,
d

2

)
= σ0

(
k − d

2
− 1,

d

2

)
= C

(
k − 2,

d− 2

2

)
σ0

(
n− d− f, d− 2

2

)
= σ0

(
n− d

2
− k + 1,

d

2
− 1

)
= C

(
n− k − 1,

d− 4

2

)
σ0

(
n− d− f − 1,

d

2

)
= σ0

(
n− d

2
− k, d

2

)
= C

(
n− k − 1,

d− 2

2

)
σ0

(
f + 1,

d− 2

2

)
= σ0

(
k − d

2
,
d

2
− 1

)
= C

(
k − 2,

d− 4

2

)
ρ0

(
f,
d

2

)
= ρ0

(
2k − d− 2

2
,
d

2

)
ρ0

(
n− d− f, d− 2

2

)
= ρ0

(
2n− d− 2k+

2
,
d− 2

2

)
= ρ0

(
2n− d− 2k + 2

2
,
d− 2

2

)
ρ0

(
n− d− f − 1,

d

2

)
= ρ0

(
n− d− k + d

2
+ 1− 1,

d

2

)
= ρ0

(
2n− d− 2k

2
,
d

2

)
ρ0

(
f + 1,

d− 2

2

)
= ρ0

(
k − d

2
− 1 + 1,

d

2
− 1

)
= ρ0

(
2k − d

2
,
d− 2

2

)

Unfortunately the value of ρ0 cannot be calculated directly as the value of σ0, in this case we
need to analyze the different possibilities for the parity of the parameters n, k, and d

2
.

1. When n is even, k is even, and d
2

is even:

ρ0
(
2k−d−2

2
, d
2

)
= 0

ρ0
(
2n−d−2k+2

2
, d−2

2

)
= C(n−k−2

2
, d−4

4
)

ρ0
(
2n−d−2k

2
, d
2

)
= C(n−k−2

2
, d−4

4
)

ρ0
(
2k−d
2
, d−2

2

)
= C(k−2

2
, d−4

4
)

2. When n is even, k is even, and d
2

is odd:

ρ0
(
2k−d−2

2
, d
2

)
= C(k−2

2
, d−2

4
)

ρ0
(
2n−d−2k+2

2
, d−2

2

)
= C(n−k−2

2
, d−6

4
)

ρ0
(
2n−d−2k

2
, d
2

)
= C(n−k−2

2
, d−2

4
)

ρ0
(
2k−d
2
, d−2

2

)
= 0

3. When n is even, k is odd, and d
2

is even:

ρ0
(
2k−d−2

2
, d
2

)
= C(k−3

2
, d−4

4
)

ρ0
(
2n−d−2k+2

2
, d−2

2

)
= C(n−k−1

2
, d−4

4
)

ρ0
(
2n−d−2k

2
, d
2

)
= 0

ρ0
(
2k−d
2
, d−2

2

)
= C(k−3

2
, d−4

4
)
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4. When n is even, k is odd, and d
2

is odd:

ρ0
(
2k−d−2

2
, d
2

)
= C(k−3

2
, d−2

4
)

ρ0
(
2n−d−2k+2

2
, d−2

2

)
= 0

ρ0
(
2n−d−2k

2
, d
2

)
= C(n−k−1

2
, d−2

4
)

ρ0
(
2k−d
2
, d−2

2

)
= C(k−3

2
, d−6

4
)

5. When n is odd, k is even, and d
2

is even:

ρ0
(
2k−d−2

2
, d
2

)
= 0

ρ0
(
2n−d−2k+2

2
, d−2

2

)
= C(n−k−1

2
, d−4

4
)

ρ0
(
2n−d−2k

2
, d
2

)
= 0

ρ0
(
2k−d
2
, d−2

2

)
= C(k−2

2
, d−4

4
)

6. When n is odd, k is even, and d
2

is odd:

ρ0
(
2k−d−2

2
, d
2

)
= C(k−2

2
, d−2

4
)

ρ0
(
2n−d−2k+2

2
, d−2

2

)
= 0

ρ0
(
2n−d−2k

2
, d
2

)
= C(n−k−1

2
, d−2

4
)

ρ0
(
2k−d
2
, d−2

2

)
= 0

7. When n is odd, k is odd, and d
2

is even:

ρ0
(
2k−d−2

2
, d
2

)
= C(k−3

2
, d−4

4
)

ρ0
(
2n−d−2k+2

2
, d−2

2

)
= C(n−k−2

2
, d−4

4
)

ρ0
(
2n−d−2k

2
, d
2

)
= C(n−k−2

2
, d−4

4
)

ρ0
(
2k−d
2
, d−2

2

)
= C(k−3

2
, d−4

4
)

8. When n is odd, k is odd, and d
2

is odd:

ρ0
(
2k−d−2

2
, d
2

)
= C(k−3

2
, d−2

4
)

ρ0
(
2n−d−2k+2

2
, d−2

2

)
= C(n−k−2

2
, d−6

4
)

ρ0
(
2n−d−2k

2
, d
2

)
= C(n−k−2

2
, d−2

4
)

ρ0
(
2k−d
2
, d−2

2

)
= C(k−3

2
, d−6

4
)

We summarize this result in the following theorem.

Theorem 5.4. Let n and d be positive integers, where n ≥ d, d ≥ 4 is even and k ≥ d+2
2

. The
number of nonisomorphic caterpillars of size n, diameter d, and smaller stable set of cardinality k
is:

2c(n, d, k) = C

(
k − 2,

d− 2

2

)
C

(
n− k − 1,

d− 4

2

)
+ ρ0

(
2k − d− 2

2
,
d

2

)
ρ0

(
2n− d− 2k + 2

2
,
d− 2

2

)
+ C

(
n− k − 1,

d− 2

2

)
C

(
k − 2,

d− 4

2

)
+ ρ0

(
2n− d− 2k

2
,
d

2

)
ρ0

(
2k − d

2
,
d− 2

2

)
.

We conclude this work with Table 4 where the initial values of c(n, d, k) are shown.
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Table 4. Number of nonisomorphic caterpillars of size n, diameter d, and smaller stable set of cardinality k

n d
k

n d
k

Total Total

Total

Total

Total

Total

Total

Total

Total

Total

Total

2

3

4

5

6

7

8

9

10

1 3 9 7 20 1 5 20 44 66 136
7 0 0 0 1 1 10 0 0 0 0 1 1
6 0 0 2 1 3 9 0 0 0 0 4 4
5 0 0 3 3 6 8 0 0 0 6 10 16
4 0 2 3 1 6 7 0 0 0 10 18 28
3 0 1 1 1 3 6 0 0 9 13 16 38
2 1 1 5 0 0 6 10 12 28

1 3 6 10 4 0 4 4 4 4 16
6 0 0 1 1 3 0 1 1 1 1 4
5 0 0 2 2 2 1 1
4 0 2 2 4 1 2 16 30 23 72
3 0 1 1 2 9 0 0 0 0 1 1
2 1 1 8 0 0 0 2 2 4

1 2 3 6 7 0 0 0 6 6 12
5 0 0 1 1 6 0 0 6 8 5 19
4 0 1 1 2 5 0 0 5 8 6 19
3 0 1 1 2 4 0 1 4 5 2 12
2 1 1 3 0 1 1 1 1 4

1 2 3 2 1 1
4 0 1 1 1 4 12 19 36
3 0 1 1 8 0 0 0 1 1
2 1 1 7 0 0 0 3 3

1 1 2 6 0 0 4 5 9
3 0 1 1 5 0 0 4 6 10
2 1 1 4 0 3 3 3 9

1 1 3 0 1 1 1 3
2 1 1 2 1 1

1 2 3 4 1 2 3 4 5
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