INDONESIAN JOURNAL
 OF COMBINATORICS

On odd harmonious labeling of $P_{n} \unrhd C_{4}$ and
 $P_{n} \unrhd D_{2}\left(C_{4}\right)$

Sabrina Shena Sarasvati, Ikhsanul Halikin, Kristiana Wijaya*
Graph, Combinatorics, and Algebra Research Group, Department of Mathematics, FMIPA, Universitas Jember, Jl. Kalimantan 37, Jember 68121, Indonesia

sabrinashena410@gmail.com, ikhsan.fmipa@unej.ac.id, kristiana.fmipa@unej.ac.id

Abstract

A graph G with q edges is said to be odd harmonious if there exists an injection $\tau: V(G) \rightarrow$ $\mathbb{Z}_{2 q}$ so that the induced function $\tau^{*}: E(G) \rightarrow\{1,3, \ldots, 2 q-1\}$ defined by $\tau^{*}(x y)=\tau(x)+\tau(y)$ is a bijection. Here we show that graphs constructed by edge comb product of path P_{n} and cycle on four vertices C_{4} or shadow of a cycle of order four $D_{2}\left(C_{4}\right)$ are odd harmonious.

Keywords: Odd harmonious labeling, edge comb product, path, cycle, shadow graph.
Mathematics Subject Classification: 05C78
DOI: 10.19184/ijc.2021.5.2.5

1. Introduction

Throughout this paper we consider simple, finite, connected and undirected graph. A harmonious labeling was first introduced in 1980 by Graham and Sloane [4]. A harmonious labeling on a graph G with q edges is a one-to-one function $\tau: V(G) \rightarrow \mathbb{Z}_{q}$, such that the induced function $\tau^{*}: E(G) \rightarrow \mathbb{Z}_{q}$, defined by $\tau^{*}(e)=\tau^{*}(x y)=\tau(x)+\tau(y)$ for each edge $e=x y \in E(G)$ is a bijective function. One of various of harmonious labeling is an odd harmonious labeling. In 2019, Liang and Bai [12] was introduced an odd harmonious labeling. They defined that a graph G with q edges is said to be odd harmonious if there exists a one-to-one function $\tau: V(G) \rightarrow\{0,1, \ldots, 2 q-1\}$ so that the induced function $\tau^{*}: E(G) \rightarrow\{1,3, \ldots, 2 q-1\}$

[^0]defined by $\tau^{*}(x y)=\tau(x)+\tau(y)$ for each $u v \in E(G)$ is a bijection. Liang and Bai [12] proved that if G is an odd harmonious graph, then G is bipartite. They gave a relation between order and size of a harmonious graph, namely if G is an odd harmonious graph with p vertices and q edges, then p is on a closed interval $[2 \sqrt{q}, 2 q-1]$. In the same paper, they also proved that a cycle C_{n} is an odd harmonious graph if and only if $n \equiv 0(\bmod 4)$.

There are many papers deal with odd harmonious labeling. In 2011, Vaidya and Shah [17] proved that the shadow graph of path P_{n} and star graph $K_{1, n}$ are odd harmonious graphs. Furthermore Vaidya and Shah [18] investigate odd harmonious labeling of the shadow graph and the splitting graph of bistar $B_{n, n}$, the arbitrary supersubdivision of path P_{n}, the joint sum of two copies of cycle C_{n} for $n \equiv 0(\bmod 4)$ and the graph $H_{n, n}$. Let G be a connected graph. The shadow graph $D_{2}(G)$ is constructed by taking two copies of G say G^{\prime} and $G^{\prime \prime}$, and join each vertex $u^{\prime} \in V\left(G^{\prime}\right)$ to the neighbours of the corresponding vertex u^{\prime} in $V\left(G^{\prime \prime}\right)$.

Abdel-Aal [2] studied odd harmonious labelings of cyclic snakes. Alyani et al. [3] gave an odd harmonious labeling of $k C_{4}$-snake and $k C_{8}$-snake graphs. Abdel-Aal and Seoud [1] proved that m-shadow path is odd harmonious. Sugeng et al. [16] discussed about odd harmonious labeling of m-shadow of cycle, gear with pendant and shuriken graphs.

In their some papers, Jeyanthi and Philo studied odd harmonious labeling of some graphs, namely plus graphs [8], some cycle related graphs [9], the shadow and splitting of graph $K_{2, n}, C_{n}$ for $n \equiv 0(\bmod 4)[10]$ and gird graph [6], super subdivision graphs [5], and some certain graphs [7]. Next, Jeyanthi et al. [11] proved that banana tree and the path union of cycles C_{n} for $n=$ $0(\bmod 4)$ are odd harmonious.

Pujiwati et al. [13] gave an odd harmonious labeling of the double stars $S_{m, n}$. They also investigated whether the graphs obtained by an identification operation of a cycle and star, are odd harmonious or not. Srividya and Govindarajan [15] discussesd about an odd harmonious labelling of even cycles with parallel chords and dragons with parallel chords. Saputri et al. [14] proved that the dumbbell $D_{n, k, 2}$ for $n \equiv k \equiv 0(\bmod 4)$ and the generalized prims graphs are odd harmonious.

Here we discuss an odd harmonious labeling of graphs formed by edge comb product of path P_{n} and the cycle C_{4} or the shadow of a cycle on four vertices $D_{2}\left(C_{4}\right)$, namely $P_{n} \unrhd C_{4}$ and $P_{n} \unrhd D_{2}\left(C_{4}\right)$ for each $n \geq 2$. Let G and H be graphs. An edge comb product of two graphs G and H, denoted by $G \unrhd H$, is a graph formed by taking one copy of G and $|E(G)|$ copies of H, then attaching the i-th copy of H at the edge e to the i-th edge of G.

2. Main Results

In this section, we prove that $P_{n} \unrhd C_{4}$ and $P_{4} \unrhd D_{2}\left(C_{4}\right)$ are odd harmonious graphs. First, we consider a graph $P_{n} \unrhd C_{4}$. A graph $P_{n} \unrhd C_{4}$ has $3 n-2$ vertices and $4(n-1)$ edges. Let

$$
V\left(P_{n} \unrhd C_{4}\right)=\left\{u_{i} \mid 1 \leq i \leq n\right\} \cup\left\{v_{i 1}, v_{i 2} \mid 1 \leq i \leq n-1\right\}
$$

and

$$
E\left(P_{n} \unrhd C_{4}\right)=\left\{u_{i} v_{i 1}, v_{i 1} v_{i 2}, u_{i} u_{i+1}, u_{i+1} v_{i 2} \mid 1 \leq i \leq n-1\right\}
$$

be the set of vertices and edges of $P_{n} \unrhd C_{4}$, respectively. As an illustration, in Figure 1, we can see that the notation of vertices and edges of $P_{5} \unrhd C_{4}$.

Figure 1. The notation of vertices and edges of $P_{5} \unrhd C_{4}$.

Theorem 2.1. $P_{n} \unrhd C_{4}$ is an odd harmonious graph for all $n \geq 2$.
Proof. We define a vertex labeling $\tau: V\left(P_{n} \unrhd C_{4}\right) \rightarrow\{0,1, \ldots, 8 n-9\}$ by

$$
\tau\left(u_{i}\right)= \begin{cases}4 i-4, & \text { for odd } i \\ 4 i-3, & \text { for even } i\end{cases}
$$

for each $i=1,2, \ldots, n$, and

$$
\tau\left(v_{i j}\right)= \begin{cases}4 i-3, & \text { for odd } i \text { and } j=1, \\ 4 i-4, & \text { for even } i \text { and } j=1, \\ 4 i-2, & \text { for odd } i \text { and } j=2, \\ 4 i-1, & \text { for even } i \text { and } j=2\end{cases}
$$

for each $i=1,2, \ldots, n-1$. It is easily seen that each vertex of $V\left(P_{n} \unrhd C_{4}\right)$ get distinct label. So, the vertex labeling $\tau: V\left(P_{n} \unrhd C_{4}\right) \rightarrow\{0,1, \ldots, 8 n-9\}$ is an injective function. Next, by the vertex label, we obtain the edge labeling $\tau^{*}: E\left(P_{n} \unrhd C_{4}\right) \longrightarrow\{1,3, \ldots, 8 n-9\}$ as follows.
For $i=1,2, \ldots, n-1$,

$$
\begin{aligned}
& \tau^{*}\left(u_{i} u_{i+1}\right)=2(4 i-2)+1, \\
& \tau^{*}\left(v_{i 1} v_{i 2}\right)=2(4 i-3)+1, \\
& \tau^{*}\left(u_{i} v_{i 1}\right)=2(4 i-4)+1, \\
& \tau^{*}\left(u_{i+1} v_{i 2}\right)=2(4 i-1)+1 .
\end{aligned}
$$

We can see that all edges get odd distinct labels from $1,3, \ldots, 8 n-9$. Since the cardinality of the set $\{1,3, \ldots, 8 n-9\}$ is the same as the number of edges $E\left(P_{n} \unrhd C_{4}\right)$, namely $4 n-4$ and each edge obtain distinct labels, then $\tau^{*}: E\left(P_{n} \unrhd C_{4}\right) \longrightarrow\{1,3, \ldots, 8 n-9\}$ is a bijection. Hence, $P_{n} \unrhd C_{4}$ is an odd harmonious graph for all $n \geq 2$.

An odd harmonious labeling of $P_{7} \unrhd C_{4}$ is depicted in Figure 2.

Figure 2. An odd harmonious labeling of $P_{7} \unrhd C_{4}$.

Furthermore, we consider a graph $P_{n} \unrhd D_{2}\left(C_{4}\right)$. A graph $P_{n} \unrhd D_{2}\left(C_{4}\right)$ has $7 n-6$ vertices and $16(n-1)$ edges. We denote the vertex-set and edge-set of a graph $P_{n} \unrhd D_{2}\left(C_{4}\right)$ as follows.

For $i=1,2, \ldots, n-1$,

$$
V\left(P_{n} \unrhd D_{2}\left(C_{4}\right)\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{v_{i j}, x_{i j}, y_{i j} \mid j=1,2\right\}
$$

and

$$
\begin{aligned}
E\left(P_{n} \unrhd D_{2}\left(C_{4}\right)\right)= & \left\{u_{i} u_{i+1}, v_{i 1} v_{i 2}, x_{i 1} x_{i 2}, y_{i 1} y_{i 2}\right\} \cup\left\{u_{i} v_{i 1}, x_{i 1} y_{i 1}, x_{i 2} y_{i 2}, u_{i+1} v_{i 2}\right\} \cup \\
& \left\{u_{i} x_{i 1}, u_{i} y_{i 2}, v_{i 1} x_{i 2}, v_{i 1} y_{i 1}\right\} \cup\left\{u_{i+1} x_{i 2}, u_{i+1} y_{i 1}, v_{i 2} x_{i 1}, v_{i 2} y_{i 2}\right\} .
\end{aligned}
$$

Figure 3 shows the vertices and edges notation of the $P_{5} \unrhd D_{2}\left(C_{4}\right)$.
Theorem 2.2. $P_{n} \unrhd D_{2}\left(C_{4}\right)$ is an odd harmonious graph for all $n \geq 2$.
Proof. We define the vertex labeling of $V\left(P_{n} \unrhd D_{2}\left(C_{4}\right)\right), \tau: V\left(P_{n} \unrhd D_{2}\left(C_{4}\right)\right) \rightarrow\{0,1, \ldots, 32 n-$ $33\}$ as follows. For $i=1,2, \ldots, n$,

$$
\tau\left(u_{i}\right)= \begin{cases}16 i-16, & \text { for odd } i \\ 16 i-25, & \text { for even } i\end{cases}
$$

and for $i=1,2, \ldots, n-1$,

$$
\begin{aligned}
& \tau\left(v_{i j}\right)= \begin{cases}16 i-15, & \text { for odd } i \text { and } j=1, \\
16 i-6, & \text { for even } i \text { and } j=1, \\
16 i+8, & \text { for odd } i \text { and } j=2, \\
16 i-1, & \text { for even } i \text { and } j=2,\end{cases} \\
& \tau\left(x_{i j}\right)= \begin{cases}16 i-13, & \text { for odd } i \text { and } j=1, \\
16 i-4, & \text { for even } i \text { and } j=1, \\
16 i, & \text { for odd } i \text { and } j=2, \\
16 i-9, & \text { for even } i \text { and } j=2,\end{cases}
\end{aligned}
$$

Figure 3. The notation of vertices dan edges of $P_{5} \unrhd D_{2}\left(C_{4}\right)$.

$$
\tau\left(y_{i j}\right)= \begin{cases}16 i-8, & \text { for odd } i \text { and } j=1 \\ 16 i-17, & \text { for even } i \text { and } j=1, \\ 16 i-11, & \text { for odd } i \text { and } j=2, \\ 16 i-2, & \text { for even } i \text { and } j=2\end{cases}
$$

We see that each vertex of $V\left(P_{n} \unrhd D_{2}\left(C_{4}\right)\right)$ has distinct label. So, the vertex labeling τ is injective. By the vertex labeling τ, we obtain the edge label by the formula $\tau^{*}(x y)=\tau(x)+\tau(y)$ for each $x y \in E\left(P_{n} \unrhd D_{2}\left(C_{4}\right)\right)$ and prove that every edge gets the distinct odd label.
For $i=1,2, \ldots, n-1$,

$$
\begin{array}{llll}
\tau^{*}\left(u_{i} u_{i+1}\right) & =32 i-25, & & \tau^{*}\left(v_{i 1} v_{i 2}\right)=32 i-7, \\
\tau^{*}\left(x_{i 1} x_{i 2}\right)=32 i-13, & & \tau^{*}\left(y_{i 1} y_{i 2}\right)=32 i-19, \\
\tau^{*}\left(u_{i} v_{i 1}\right)=32 i-31, & & \tau^{*}\left(x_{i 1} y_{i 1}\right)=32 i-21, \\
\tau^{*}\left(x_{i 2} y_{i 2}\right)=32 i-11, & & \tau^{*}\left(u_{i+1} v_{i 2}\right)=32 i-1 \\
\tau^{*}\left(u_{i} x_{i 1}\right) & =32 i-29, & & \tau^{*}\left(u_{i} y_{i 2}\right)=32 i-27, \\
\tau^{*}\left(v_{i 1} x_{i 2}\right)=32 i-15, & & \tau^{*}\left(v_{i 1} y_{i 1}\right)=32 i-23, \\
\tau^{*}\left(u_{i+1} x_{i 2}\right)=32 i-9, & & \tau^{*}\left(u_{i+1} y_{i 1}\right)=32 i-17, \\
\tau^{*}\left(v_{i 2} x_{i 1}\right)=32 i-5, & & \tau^{*}\left(v_{i 2} y_{i 2}\right)=32 i-3 .
\end{array}
$$

It is easily seen that each edge obtains the distinct odd label. Thus, τ is an odd harmonious labeling. Therefore $P_{n} \unrhd D_{2}\left(C_{4}\right)$ is odd harmonious for all $n \geq 2$.

For an illustration, an odd harmonious labeling of $P_{5} \unrhd D_{2}\left(C_{4}\right)$ as depicted in Figure 4.

Figure 4. An odd harmonious labeling of $P_{5} \unrhd D_{2}\left(C_{4}\right)$.

3. Concluding Remarks

We conclude this paper by giving some open problems.

1. Whether edge comb product of path P_{n} and a cycle C_{m} is an odd harmonious graph or not, for each $n \geq 2, m \geq 5$.
2. Investigate the odd harmonious labeling of edge comb product of path P_{n} and shadow of a cycle $D_{2}\left(C_{m}\right)$, namely $P_{n} \unrhd D_{2}\left(C_{m}\right)$ for all $n \geq 2, m \geq 5$.

Acknowledgments

This research has been supported by "Stimulus Penelitian, Universitas Jember, Tahun Anggaran 2021"

References

[1] M.E. Abdel-Aal and M.A. Seoud, Futher results on odd harmonious graphs, International Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor Networks (GRAPH-HOC, 8(3-4), (2016), 1-14, https://doi.org/10.5121/jgraphoc.2016.8401
[2] M. E. Abdel-Aal, Odd harmonious labelings of cyclic snakes, International Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor Networks (GRAPH-HOC), 5(3), (2013), 1-11, https://doi.org/10.5121/jgraphoc.2013.5301

On odd harmonious labeling of $P_{n} \unrhd C_{4}$ and $P_{n} \unrhd D_{2}\left(C_{4}\right) \quad \mid \quad$ S.S. Sarasvati, I. Halikin, and K. Wijaya
[3] F. Alyani, F. Firmansah, W. Giyarti, and K.A. Sugeng, The odd harmonious labeling of $k C_{n}$ snake graphs for spesific values of n, that is, for $n=4$ and $n=8$, Proceeding of IICMA 2013, (2013), 225-230.
[4] R.L. Graham and N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Disc. Meth., 1(4), (1980), 382-404, https://doi.org/10.1137/0601045
[5] P. Jeyanthi, S. Philo, and M.K. Siddiqui, Odd harmonious labeling of super subdivision graphs, Proyecciones J. Math. 38(1), (2019), 1-11, https://doi.org/10.4067/S071609172019000100001
[6] P. Jeyanthi, S. Philo, and M. Youssef, Odd harmonious labeling of grid graph, Proyecciones J. Math. 38, (2019), 411-428, https://doi.org/10.22199/issn.0717-6279-2019-03-0027
[7] P. Jeyanthi and S. Philo, Odd harmonious labeling of certain graphs, Journal of Applied Science and Computations, 6(4), (2019), 1224-1232.
[8] P. Jeyanthi and S. Philo, Odd harmonious labeling of plus graphs, Bull. Int. Math. Virtual Inst., 7, (2017), 515-526, DOI : 10.7251/BIMVI1703515J
[9] P. Jeyanthi and S. Philo, Odd harmonious labeling of some cycle related graphs, Proyecciones J. Math. 35(1), (2016), 85-98, https://doi.org/10.4067/S0716-09172016000100006
[10] P. Jeyanthi and S. Philo, Odd harmonious labeling of some new families of graphs, Electron. Notes Discrete Math. 48, (2015), 165 -168, https://doi.org/10.1016/j.endm.2015.05.024
[11] P. Jeyanthi, S. Philo, and K.A. Sugeng, Odd harmonious labeling of some new families of graphs, SUT J. Math. 51(2), (2015), 181-193.
[12] Z. Liang and Z. Bai, On the odd harmonious graphs with applications, J. Appl. Math. Comput., 29, (2009), 105-116, https://doi.org/10.1007/s12190-008-0101-0
[13] D.A. Pujiwati, I. Halikin, and K. Wijaya, Odd harmonious labeling of two graphs containing star, AIP Conference Proceedings 2326, 020019 (2021), https://doi.org/10.1063/5.0039644
[14] G.A. Saputri, K.A. Sugeng, and D. Froncek, The odd harmonious labeling of dumbbell and generalized prims graphs, AKCE Int, J. Graphs Comb., 10(2), (2013), 221-228, https://doi.org/10.1080/09728600.2013.12088738
[15] V. Srividya and R. Govindarajan, On odd harmonious labelling of even cycles with parallel chords and dragons with parallel chords, International Journal of Computer Aided Engineering and Technology 13(4), (2020), https://doi.org/10.1504/IJCAET.2020.110475
[16] K.A. Sugeng, S. Surip, and R. Rismayati, On odd harmonious labeling of m-shadow of cycle, gear with pendant and shuriken graphs, AIP Conference Proceedings 2192, 040015 (2019), https://doi.org/10.1063/1.5139141

On odd harmonious labeling of $P_{n} \unrhd C_{4}$ and $P_{n} \unrhd D_{2}\left(C_{4}\right) \quad \mid \quad$ S.S. Sarasvati, I. Halikin, and K. Wijaya
[17] S.K. Vaidya and N.H. Shah, Some new odd harmonious graphs, International Journal of Mathematics Soft Computing, 1(1), (2011), 9-16.
[18] S.K. Vaidya and N.H. Shah, Odd harmonious labeling of some graphs, International J. Math. Combin.3, (2012), 105-112, https://doi.org/10.5281/ZENODO. 9410

[^0]: *Corresponding author
 Received: 26 February 2021, Revised: 29 October 2021, Accepted: 31 October 2021.

