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Abstract

Characterizing all graphs having a certain locating-chromatic number is not an easy task. In this
paper, we are going to pay attention on finding all unicyclic graphs of order n (≥ 6) and having
locating-chromatic number n− 3.
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1. Introduction

Let G = (V,E) be a connected graph. For any two vertices a and b in G, define the distance
between a and b, denoted by d(a, b), is the length of a shortest path connecting a and b. The
distance from a vertex a to a set S in G, denoted by d(a, S), is min{d(a, x) | x ∈ S}. Let
Π = {L1, L2, ..., Lk} be an ordered partition of V (G) induced by a k-coloring c. The color code
cΠ(v) of a vertex v of G is defined as

cΠ(v) = (d(v, L1), d(v, L2), ..., d(v, Lk)).
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If any two distinct vertices u and v of G satisfy that cΠ(u) 6= cΠ(v), then the coloring c is called a
locating-coloring of G. The locating-chromatic number of G, denoted by χL(G), is the smallest
integer k such that G has a locating-coloring with k colors.

Chartrand et al. [5] introduced the notion of the locating-chromatic number of a graph. They
derived some bounds of the locating-chromatic number of a graph in terms of its order and di-
ameter. The locating-chromatic numbers of some well-known graphs are also obtained, such as
for paths, cycles, double stars, and complete multipartite graphs. The existence of a tree of order
n ≥ 5 having locating-chromatic number k for any k ∈ {3, 4, ..., n − 2, n} is also shown. In [8],
Furuya and Matsumoto have proposed an algorithm to estimate an upper bound for the locating-
chromatic number of any tree. This bound depends on the number of leaves and the number of
local end-branches in a tree. Recently, Assiyatun et al. [3] proposed an improved algorithm for
calculating the upper bound for the locating-chromatic number of any tree. The bound obtained is
much better than the one of Furuya and Matsumoto.

All connected graphs of order n and having locating-chromatic number n have been completely
characterised, i.e., complete multipartite graphs, see [5]. For small locating-chromatic number, all
connected graphs with locating-chromatic number 3 have been characterized, see [4] and [2]. In
particular for trees, Syofyan et al. [9] has found all trees of order nwith locating-chromatic number
t, where 2 ≤ t < n

2
. Furthermore, in [6], Chartrand et al. characterized all connected graphs of

order n and having locating-chromatic number n− 1. However, the problem on characterizing all
connected graphs of order n and having locating-chromatic number n− 2 is still open. A graph is
called unicyclic if it contains exactly one cycle. Recently, Arfin and Baskoro [1] characterized all
unicyclic graphs of order n ≥ 5 with locating-chromatic number n− 2. Such graphs are presented
in the following theorem. In this paper, we characterize all unicyclic graphs of order n (≥ 6) with
locating-chromatic number n− 3.

Theorem 1.1. [1] There are exactly 9 non-isomorphic unicyclic graphs of order n ≥ 5, listed in
Figure 1, with locating-chromatic number n− 2.

Figure 1. All unicyclic graphs of order n ≥ 5 with locating-chromatic number n− 2.

2. Basic Properties

In this section, we give some basic properties of locating-chromatic number of graphs. Let
G(V,E) be a nonempty connected graph of order n. The degree of vertex v in G, denoted by
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deg(v), is the number of vertices in G that are adjacent to v. A vertex of degree one is called an
end-vertex or a leaf of G. The external degree of a vertex v in G, denoted by d+(v), is the number
of leaves adjacent to v. The maximum external degree of a graph G is max{d+(v) | v ∈ V (G)}
and denoted by ∆+(G). The set of all vertices adjacent to vertex v in G is denoted by N(v). The
following observation and corollary are natural.

Observation 2.1. [5] Let c be a locating-coloring in a connected graph G. If u and v are dis-
tinct vertices of G such that d(u,w) = d(v, w) for all w ∈ V (G)\{u, v}, then c(u) 6= c(v). In
particular, if u and v are nonadjacent vertices of G such that N(u) = N(v), then c(u) 6= c(v).

Corollary 2.1. [5] If G is a connected graph containing a vertex v with d+(v) = p, then χL(G) ≥
p+ 1. Furthermore, if ∆+(G) = P , then χL(G) ≥ P + 1.

Furthermore, Chartrand, et al. [5] derived some bounds on the locating-chromatic number of a
connected graph in relation with its order and diameter, as shown in the following theorem.

Theorem 2.1. [5] If G is a graph of order n ≥ 3 and diam(G) ≥ 2, then

logd+1 n ≤ χL(G) ≤ n− diam(G) + 2

Note that diam(G) is the diameter of graph G. As a direct consequence of Theorem 2.1, we have
the following corollaries.

Corollary 2.2. If G is a graph of order n ≥ 6 with locating-chromatic number n − 3, then 2 ≤
diam(G) ≤ 5.

Corollary 2.3. If k is the length of a cycle in a unicyclic graph G of order n (≥ 6) with locating-
chromatic number n− 3, then 3 ≤ k ≤ 11.

A tree T for which a vertex v is distinguished is called a rooted tree and the distinguished vertex
is called a root of the tree. A rooted tree will be considered to be leveled, i.e. level 0 contains the
root, v, of the tree, level 1 consists of all vertices adjacent to v, etc. A rooted tree T is called trivial
if it is of order 1, otherwise it is nontrivial. Let H be a unicyclic graph containing a cycle of length
k. Then, the graph H can be also considered as the graph obtained from k rooted trees Ti of roots
ai(1 ≤ i ≤ k) by connecting all these roots into a cycle Ck such that:

V (H) =
k⋃

i=1

V (Ti) and E(H) =

(
k⋃

i=1

E(Ti)

)
∪ E(Ck).

In this paper, we denote by H the set of all unicyclic graphs H of order n ≥ 6 with χL(H) =
n− 3. Note that there is no such unicyclic graph H of order n ≤ 5 with χL(H) = n− 3.
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3. Maximum external degree

In this section, we are going to show that every unicyclic graphH of order n ≥ 8 with χL(H) =
n− 3 must have the maximum external degree n− 4, namely ∆+(H) = n− 4. To do this, let us
first consider the following lemma.

Lemma 3.1. If H is a unicyclic graph of order n ≥ 8 with ∆+(H) = 1, then χL(H) ≤ n− 4.

Proof. Let H be a unicyclic graph of order n ≥ 8 with ∆+(H) = 1. Let k be the length of the
unique cycle in H . Then, consider the following two cases.

Case 1: 3 ≤ k ≤ 7. Consider any connected subgraph I of H of order 8 and containing the
unique cycle with ∆+(I) = 1. Then, all these possible subgraphs I for each k are shown in Figures
2 and 3, along with their minimum locating-colorings.

It can be seen that every subgraph I in Figures 2 and 3 has a minimum locating-coloring
with either 3 or 4 colors. Now extend this coloring into H by coloring all the remaining vertices
in H with new different colors. By this way, we obtain a locating-coloring in H with at most
(n− 8) + 4 = n− 4 colors. Therefore, χL(H) ≤ n− 4.

Case 2: k ≥ 8. Now, consider the unique cycle Ck in H and let V (Ck) = {ai | 1 ≤ i ≤ k}. If
k is odd, then define a coloring c : V (Ck)→ {1, 2, 3} with:

c(ai) =


1, if i = 1
2, if i is even
3, if i ≥ 3 and i is odd.

If k is even, then define a coloring c : V (Ck)→ {1, 2, 3, 4} with:

c(ai) =


1, if i = 1
2, if i = 2
3, if i ≥ 3 and i is odd
4, if i ≥ 4 and i is even.

It is clear that c is a locating-coloring in Ck. Now, extend this coloring c into H by coloring
all the remaining vertices in H with new different colors. Of course, this extended coloring is a
locating-coloring in H . Then, we obtain χL(H) ≤ n− 4.

Theorem 3.1. IfH is a unicyclic graph of order n ≥ 8 with χL(H) = n−3, then ∆+(H) = n−4.

Proof. Let H be a unicyclic graph of order n ≥ 8 with χL(H) = n− 3. If ∆+(H) ≥ n− 3, then
by Corollary 2.1 we have χL(H) ≥ n−3+1 = n−2, a contradiction. Therefore, ∆+(H) ≤ n−4.
Now, assume ∆+(H) < n − 4. Let x be a vertex with maximum external degree, i.e. d+(x) =
∆+(H) ≤ n− 5.

If ∆+(H) = 0, it follows that H ∼= Cn which means χL(H) = 3 for odd n or 4 for even
n, a contradiction. If ∆+(H) = 1, then by Lemma 3.1, we have χL(H) ≤ n − 4, a contra-
diction. Therefore, 2 ≤ ∆+(H) ≤ n − 5. Let u1, u2, · · · , u∆+(H) be the leaves adjacent to x
in H . By Corollary 2.1 the vertices x, u1, u2, · · · , u∆+(H) must be assigned with distinct colors,
say 1, 2, · · · ,∆+(H) + 1. Now, consider the remaining vertices other than x and its leaves in H .
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Figure 2. All the subgraphs I of k = 3 or k = 4 along with their minimum locating-colorings.

Let J be a subgraph induced by these remaining vertices, say V (J) = {v1, v2, · · · , vn−∆+(H)−1}.
Then, there are at least 5 vertices in J . Let p and q be two non-adjacent vertices in J such that
d(p, w) 6= d(q, w) for some w ∈ V (H)\{p, q}. Define a coloring such that p and q are assigned
with the same color, and the other n − ∆+(H) − 3 remaining vertices in J are assigned with
distinct colors different from the colors of p and q. Such a coloring of H is a locating-coloring,
hence χL(H) ≤ max{∆+(H) + 1, n−∆+(H)− 2} ≤ n− 4, which is a contradiction. Therefore,
∆+(H) = n− 4.
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Figure 3. All the subgraphs I with k = 5, 6, or k = 7 along with their minimum locating-colorings.

Figure 4. A locating-coloring c in the unique cycle.

4. Characterization

Let H be a unicyclic graph of order n ≥ 6 with χL(H) = n − 3. In this section, we will
characterize all graphs H .

Theorem 4.1. There are exactly three non-isomorphic unicyclic graphs H of order n ≥ 8 with
χL(H) = n− 3.

Proof. Let H be a unicyclic graph of order n ≥ 8 and χL(H) = n − 3. By Theorem 3.1, we
have ∆+(H) = n − 4. Let x be a vertex of H with maximum external degree, i.e. d+(x) =
∆+(H) = n− 4. Then, there are exactly three remaining vertices other than x and its leaves. The
connected subgraph induced by these three vertices together with x will contain a unique cycle.
Therefore, there are exactly three possible graphs H up to isomorphism (see Figure 5). For the
converse, by Corollary 2.1, we have that χL(H) ≥ n − 3. Next, each of these three graphs has a
locating-coloring with n − 3 colors (see Figure 5), hence χL(H) ≤ n − 3. Therefore, for each of
these graphs H , we have χL(H) = n− 3.

78



www.ijc.or.id

All unicyclic graphs of order n with locating-chromatic number n− 3 | E.T. Baskoro and Arfin

Figure 5. Three non-isomorphic unicyclic graphs H of order n and χL(H) = n − 3 with their minimum locating-
colorings.

To complete the characterization, we have to find all the unicyclic graphs H of order n ≤ 7
with the required locating-chromatic number. Our search will be based on the length of the unique
cycle Ck in H .

Theorem 4.2. There are exactly two non-isomorphic unicyclic graphs H of order n ≤ 7 with
χL(H) = n− 3 containing Ck for k ≥ 5.

Figure 6. Graphs C6, G1, G2, G3, G4, and G5, each with its minimum locating-coloring.

Proof. Let H be a unicyclic graph of order n ≤ 7 with χL(H) = n − 3 and containing the cycle
of length k ≥ 5. Then, k = 5, 6, or 7. If k = 7 then H ∼= C7 and χL(C7) = 3 (= n − 4),
a contradiction. If k = 5 or 6, then H must be isomorphic to C6, G1, G2, G3, G4, or G5 (see
Figure 6). We can see that G1 and G5 are the only graphs having the required locating-chromatic
number.

Theorem 4.3. There are exactly 12 non-isomorphic unicyclic graphs H of order n ≤ 7 containing
C3 with χL(H) = n− 3.

Proof. Let H be a unicyclic graph of order n ≤ 7 containing C3. Since the order of H must be at
least 6, then H must be a connected graph obtained from three rooted trees of total order n = 6
or n = 7, by connecting all roots into such a cycle C3. By Corollary 2.2, the diameter of H is at
least 2 and at most 5. These restrictions lead to 25 possible graphs H up to isomorphism, as shown
in Figure 7 with their minimum locating-colorings. Thus, there are only 12 of them having the
required locating-chromatic number (inside the blue square).
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Figure 7. All possible graphs H of order n ≤ 7 containing C3 with their minimum locating-colorings.

Theorem 4.4. There are exactly 8 non-isomorphic unicyclic graphs H of order n ≤ 7 containing
C4 with χL(H) = n− 3.

Proof. Let H be a unicyclic graph of order n ≤ 7 containing C4. Since the order of H must be at
least 6, then H must be a connected graph obtained from three rooted trees of total order n = 6
or n = 7, by connecting all roots into such a cycle C4. By Corollary 2.2, the diameter of H is
at least 2 and at most 5. These restrictions lead to 13 possible graphs H up to isomorphism, as
shown in Figure 8 with their minimum locating-colorings. Thus, there are only 8 of them having
the required locating-chromatic number (inside the blue square), hence it completes the proof.

Figure 8. All possible graphs H of order n ≤ 7 containing C4 with their minimum locating-colorings.
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