
www.ijc.or.id

Indonesian Journal of Combinatorics 5 (1) (2021), 46–62

Broader families of cordial graphs
Christian Barrientosa, Sarah Minionb

aValencia College, Orlando, FL 32832, U.S.A
bFull Sail University, Winter Park, FL 32792, U.S.A

chr barrientos@yahoo.com, sarah.m.minion@gmail.com

Abstract

A binary labeling of the vertices of a graph G is cordial if the number of vertices labeled 0 and
the number of vertices labeled 1 differ by at most 1, and the number of edges of weight 0 and the
number of edges of weight 1 differ by at most 1. In this paper we present general results involving
the cordiality of graphs that results of some well-known operations such as the join, the corona,
the one-point union, the splitting graph, and the super subdivision. In addition we show a family
of cordial circulant graphs.
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1. Introduction

All graphs considered here are finite with no loops nor multiple edges. The notation used
follows the one used in [4] and [6]. By a (m,n) graph we mean a graph of order m and size n. In
this paper, a binary labeling of a graph G is a function that assigns to each vertex of G one of the
two labels 0 or 1, where every edge uv of G has assigned a weight defined by |f(u) − f(v)|. If f
is a binary labeling of a graph G, for x ∈ {0, 1}, vf (x) and ef (x) denote the number of vertices
labeled x by f and the number of edges of weight x, respectively.

A graph G is cordial if there exists a binary labeling f of G such that |vf (0)− vf (1)| ≤ 1 and
|ef (0)− ef (1)| ≤ 1. A cordial labeling of a graph can be represented as a coloring of the vertices
and edges of the graph, where the vertices labeled 0 are colored in black while the ones labeled
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1 are colored white, and the edges of weight 0 are represented by solid lines, while the ones of
weight 1 correspond to dashed lines. On all the figures in this work, we just use the coloring of the
vertices to represent the cordial labelings.

There is a long list of families of cordial graphs, a detailed account of them can be found in
[6]. Among the most general results we can find the following: the maximal number of edges in
a cordial graph is known [5]; if G is a (m,n) graph such that every vertex has odd degree, then
G is not cordial when m + n ≡ 2(mod 4) [12], every Eulerian (m,n) graph is not cordial when
n ≡ 2(mod 4) [2]; all unicyclic graphs are cordial except for Cn when n ≡ 2(mod 4) [8]; a cubic
graph of order m is cordial if and only if m 6≡ 4(mod 8) [10]; every Skolem-graceful graph is
cordial [15]; graceful and harmonious labelings of trees can be transformed into cordial labelings
[2]. Several operations involving cordial graphs have been studied: the Cartesian product of two
cordial graphs of even size is cordial, the composition of two cordial graphs is cordial if one of
them has odd order and even size [8]; the union of two cordial graphs is cordial if one of them has
even size, the join of two cordial graphs is cordial when both graphs have even size and either one
has even order [16].

In this paper we present several general results. In Section 2 we analyze cordial labelings of
graphs that result of the corona of two cordial graphs. In Section 3 we present a cordial labeling
of some circulant graphs; in addition, we prove that all splitting graphs of a cordial graph of even
order and even size, is cordial. In Section 4 we focus on the cordiality of graphs that result of the
super subdivision of the edges of some graphs. In Section 5 we study the cordiality of the join of
two cordial graphs. In Section 6 we consider the cordiality of the one-point union of t copies of a
cordial graph.

2. Cordial Corona Graphs

Let f be a cordial labeling of a graph G. The complementary labeling of f , denoted by f ,
is defined for every v ∈ V (G) as f(v) = 1 − f(v). Note that f is also cordial and preserves
the weights. Thus, we may assume that for every cordial graph G of odd order, there is a cordial
labeling f such that vf (0)− vf (1) = 1.

For i ∈ {1, 2}, let Gi be a (mi, ni) graph. The corona G1 �G2 is the graph obtained by taking
one copy of G1 and m1 copies of G2 and then joining the ith vertex of G1 to all the vertices in the
ith copy of G2. In general, this operation is not commutative. In [1], Andar et al. studied cordial
labelings of graphs of the form G� nK1. In this section we consider a related, but different, prob-
lem. Let G be a (m,n) cordial graph, is K1 � G cordial? In order to answer this question, we
analyze four cases. Suppose that g is a cordial labeling of G and that w is the vertex of K1.

Case 1. When m and n are even.
The cordial labeling g of G satisfies vg(0)− vg(1) = 0 and eg(0)− eg(1) = 0. We can extend

g to a cordial labeling f of K1 � G by assigning, for instance, the label 0 to w, that is, f(w) = 0.
Thus, vf (0) − vf (1) = 1. Since vg(0) − vg(1) = 0, exactly half of the edges between K1 and G
have weight 0, i.e., ef (0) − ef (1) = 0 and K1 � G is cordial. Recall that K1 � G = G + K1.
Thus, this case, as well as Case 3, are just specific instances of the result of Youssef [15], where he
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proves that if G and H are cordial and both have even size, then G+H is cordial.

Case 2. When m is odd and n is even.
In this case we use f(w) = 1 when vg(0)−vg(1) = 1 and f(w) = 0 when vg(0)−vg(1) = −1.

Either way, the number of edges of weight 1, between K1 and G, is m+1
2

. So, vf (0) − vf (1) = 0
and ef (0)− ef (1) = −1; consequently, f is cordial.

Case 3. When m is even and n is odd.
Regardless of the difference between eg(0) and eg(1), the vertex w can be labeled either 0 or 1

to obtain a cordial labeling of K1 � G, because exactly half of the edges between K1 and G have
weight 0. Then |vf (0)− vf (1)| = 1 and |ef (0)− ef (1)| = 1.

Case 4. When m and n are odd.
Recall that in this case we can assume the existence of a cordial labeling g of G such that

vg(0)− vg(1) = 1. If eg(0)− eg(1) = 1, then f(w) = 1. Thus, vf (0)− vf (1) = 0 and exactly m+1
2

of the edges between K1 and G have weight 1. Therefore ef (0) − ef (1) = 0 and f is cordial. If
eg(0) − eg(1) = −1, then f(w) = 1, because vg(0) − vg(1) = 1. Thus, exactly m+1

2
of the edges

between K1 and G have weight 1 and f is not cordial because ef (0) − ef (1) = −2. Is this last
instance possible? That is, does there exist a cordial graph of odd order and odd size such that all
its cordial labelings induce more edges of weight 1 than edges of weight 0? Note that if we use a
labeling g′ of G such that vg′(0)− vg′(1) = −1, then we will encounter the same problem.

Let O be the family of all cordial graphs of odd order and odd size for which there is no cordial
labeling g such that eg(0)− eg(1) = 1. In other terms, if G ∈ O , then any cordial labeling g of G
satisfies eg(0)− eg(1) = −1. We know that for every n ≡ 3(mod 4), the cycle Cn is a member of
O . Therefore, the wheel Wn = K1 � Cn is not cordial when n ≡ 3(mod 4).

After an exhaustive search that included all 1043 graphs of order up to seven with no isolated
vertices [11], we know that only 23 of these graphs are members of O , that is, all their cordial
labelings have an extra edge of weight 1. We show them in Figure 1, the vertex coloring exhibited,
corresponds to a cordial labeling. So we may conclude that most of the graphs of the form K1�G
are cordial provided that G is cordial. Using this notation and the calculations done before, we can
establish the following theorem.

Theorem 2.1. If G is a cordial graph such that G /∈ O , then the corona K1 �G is cordial.

This result can be used to prove the cordiality of many families of related graphs.

Theorem 2.2. Let G and H be cordial graphs. If G has even order and even size, then the corona
H �G is cordial.

Proof. Let g and h be cordial labelings of G and H , respectively. Since G has even order and
even size, we have that vg(0) − vg(1) = 0 and eg(0) − eg(1) = 0. By Theorem 2.1, we know
that there exists a labeling f of K1 � G such that ef (0) − ef (1) = 0 and vf (0) − vf (1) = 1 or
vf (0)−vf (1) = −1. Let H be a (m,n) graph. Since H�G can be seen as the graph formed by m
copies of K1�G, where the vertices w on the copies of K1�G are connected following the edges

48



www.ijc.or.id

Broader families of cordial graphs | C. Barrientos and S. Minion

G812 G1063 G1178 G1184 G1188 G1207

G1208 G1235 G1240 G1249 G1250

G3 G7 G46 G51 G353 G354

G582 G745 G790 G792 G810 G811

G812 G1063 G1178 G1184 G1188 G1207

G1208 G1235 G1240 G1249 G1250

Figure 1. Smallest members of O

of H , a cordial labeling of H �G is obtained using vh(0) copies of K1 �G where the vertices w
are labeled 0 and vh(1) copies of K1�G where the vertices w are labeled 1. The resulting labeling
fof H �G satisfies vf (0)− vf (1) = vh(0)− vh(1) and ef (0)− ef (1) = eh(0)− eh(1). Since h is
cordial, f is also cordial.

Many families of cordial graphs are obtained in this form. For instance: Pm � C4k for all
positive integers m and k; Cm � C4k for all positive integers m and k where m 6≡ 2(mod 4). In
Figure 2 we show an example where H ∼= C5 and C4k

∼= C4.

Figure 2. Cordial labeling of the corona C5 � C4

Theorem 2.3. Let G and H be cordial graphs. If G has odd order, odd size, and G /∈ O , then
H �G is cordial.
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In this case, the labeling f of the copies of K1 � G, obtained using Theorem 2.1, satisfies
vf (0) − vf (1) = 0 and ef (0) − ef (1) = 0. Thus, Theorem 2.3 can be proved using the argument
employed in Theorem 2.2, so we omit the proof. However, we show an example of the labeling
obtained in this case where H ∼= S1,4

∼= K and G ∼= C5.

Figure 3. Cordial labeling of the corona S4 � C5

Theorem 2.4. Let G be a cordial graph of odd order and even size. If H is a (m,n) graph, where
n ∈ {m− 1,m,m+ 1}, then the corona H �G is cordial.

Proof. Recall that in this case, there exists a cordial labeling f of K1�G such that vf (0)−vf (1) =
0 and ef (0)− ef (1) = −1. Without loss of generality, we assume that the vertex w of every copy
of K1 � G is labeled 0 by f . Thus, when every copy of H � G has been labeled, there are m
more edges of weight 1, but all the n edges of H have weight 0. Since n ∈ {m − 1,m,m + 1},
|m− n| ≤ 1 and H �G is cordial.

In Figure 4 we show an example of this result, where H ∼= C3 and G ∼= P5.

Figure 4. Cordial labeling of the corona C3 � P5

Let G be a cordial (m,n) graph. From Theorem 2.1 we know that when m is even and n is odd,
there exists a cordial labeling f of K1 �G such that |vf (0)− vf (1)| = 1 and |ef (0)− ef (1)| = 1.
Thus, if the cordial labeling g of G satisfies eg(0) − eg(1) = −1 and the vertex w of K1 � G is
labeled 0 by f , we can prove a result similar to the one on Theorem 2.4. A more interesting case
appears when eg(0)− eg(1) = 1.
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We say that a bipartite graph H is balanced when the absolute difference of the cardinalities of
the partite sets of V (H) is at most one. In the next theorem we prove that under these conditions,
the corona H �G is cordial for some cordial graphs of even order and odd size.

Theorem 2.5. Let H be a balanced (m,n) graph and G be a cordial graph of even order and odd
size. If g is a cordial labeling of G such that eg(0)− eg(1) = 1, then the corona H �G is cordial.

Proof. Since H is balanced, n ∈ {m− 1,m,m+1}. Suppose {B,W} is the bipartition of V (H);
without loss of generality, we assume |B| ≥ |W |. Let h : V (H)→ {0, 1} defined by

h(v) =

{
0 if v ∈ B,
1 if v ∈ W.

Thus, eh(1)− eh(0) = n and vh(0)− vh(1) ≤ 1.
The cordial labeling f of each K1 �G is taken in such a way that f(w) matches with the label

of the vertex of H associated to it. Thus, the number of vertices labeled 0 and 1 is balanced. Each
copy of K1 � G has an extra edge of weight 0. Therefore, when all the copies of K1 � G are
taken together, we have m extra edges of weight 0; since the n edges of H have weight 1 and
|m− n| ≤ 1, the resulting labeling of H �G is cordial.

In Figure 5 we show the case where H ∼= K2,3 and G ∼= P4.

Figure 5. Cordial labeling of K2,3 � P4

3. Replicated Cordial Graphs

In this section we consider two families of cordial graphs obtained using multiple copies of
some cordial graphs.

51



www.ijc.or.id

Broader families of cordial graphs | C. Barrientos and S. Minion

A circulant graph, denoted Circ(n;X), is defined for a positive integer n and a subset X of
integers 1, 2, . . . , bn

2
c, called the connections. The vertex set is Zn, the integers modulo n. There is

an edge joining two vertices j and k if and only if the difference |j− k| is in the set X . A circulant
graph is a special case of a Cayley graph; circulant graphs are vertex transitive [7].

Theorem 3.1. If n ≥ 6 is even and X = {1, k}, where k is an even number, k ≤ n−2
2

, then
G = Circ(n;X) is cordial.

Proof. In this case, G is a quartic graph of size 2n. For every i ∈ Zn, we define f(i) = 0 if i is
even and f(i) = 1 if i is odd. Thus, the edges of the form {i, i + 1} have weight 1. Since k is
an even number, the edges of the form {i, i ± k} have weight 0. Then, vf (0) = vf (1) = n

2
and

ef (0) = ef (1) = n. Therefore, f is a cordial labeling of G.

In Figure 6 we show cordial labelings of the 3 circulant graphs with n = 16, that is, Circ(16; {1, 2}),
Circ(16; {1, 4}), and Circ(16; {1, 6}).

Circ(16; {1, 2}) Circ(16; {1, 4}) Circ(16; {1, 6})

Figure 6. Cordial labelings of circulant graphs

Using this result, the following natural generalization can be proven.

Corollary 3.1. If n ≥ 8 is even and X = {g1, g2, . . . , gt, k1, k2, . . . , kt}, where every gi is a
generator of Zn and every ki is an even number such that ki ≤ n−2

2
, then Circ(n;X) is cordial.

In Figure 7 we show the case where n = 16 and X = {1, 7, 2, 4}.

Let G be a graph, for any positive integer k, the k-splitting graph of G, denote by Sk(G), is
obtained from G by adding for each vertex v of G, k new vertices v1, v2, . . . , vk so that every vi is
adjacent to every vertex that is adjacent to v. If G is a (m,n)-graph, then Sk(G) has order m(k+1)
and size n(2k + 1).
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Figure 7. Cordial labeling of Circ(16; {1, 7, 2, 4})

It is known that the splitting graphs S1(G) are cordial when G is the path Pn, the cycle Cn,
the complete bipartite graph Km,n, the wheel Wn, nK2, and the bistar Bn,n [9, 15]. In the next
theorem we prove the cordiality of a broader family of splitting graphs. By N(v) we understand
the neighborhood of the vertex v.

Theorem 3.2. If G is a cordial graph of even size, then the splitting graph Sk(G) is cordial for
every positive integer k.

Proof. Let G be a cordial (m,n) graph of even size and let V (G) = {v01, v02, . . . , v0m}, consequently
V (Sk(G)) = {vji : 1 ≤ i ≤ m and 0 ≤ j ≤ k}. Suppose that g is a cordial labeling of G such that
vg(0)− vg(1) ≥ 0. We analyze two cases that depend on the parity of m.
Case 1: When m is even.

Let f be a binary labeling of Sk(G)) defined as f(vji ) = g(v0i ) for every 1 ≤ i ≤ m and
0 ≤ j ≤ k. Since m is even and vg(0) = vg(1), we may conclude that vf (0) = vf (1). In addition,
because N(v0i ) = N(vji ), for each 1 ≤ j ≤ k, the number of edges of weight 0 incident to v0i
is the same as the number of edges of weight 0 incident to vji . Thus, ef (0) = n

2
(2k + 1) and

vf (0) =
m
2
(k + 1). Therefore, f is a cordial labeling of Sk(G)).

Case 2: When m is odd.
Recall that in this case vg(0)−vg(1) = 1. Without loss of generality we assume that g(v01) = 0.

Let f be a binary labeling of Sk(G) defined, for every 2 ≤ i ≤ m and 0 ≤ j ≤ k, as f(vji ) = g(v0i ),
and for i = 1 as f(vj1) = 0 when j ≤ bk

2
c and f(vj1) = 1 when j > bk

2
c. Thus, vf (0) = vf (1)

when k is even and vf (0) = vf (1) + 1 when k is odd. Given that for every i ≥ 2, the labeling
of vji is the same that in Case 1, which is perfectly balanced, we just need to analyze the weight
distribution of the edges incident to vj1. When k is even, the edges incident to vj1, with 1 ≤ j ≤ k

2
,

have a weight different than the edges v
k
2
+j

1 ; since the edges of G are totally balanced, so are the
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edges of Sk(G). When k is odd, the edges incident to vj1, for 0 ≤ j ≤ bk
2
c have a weight different

than the edges v
d k
2
e+j

1 , hence the weights of these edges are completely balanced and f is a cordial
labeling of Sk(G).

As a consequence of this result we get that the splittings of any of the following graphs is
cordial:

• A tree of even size.

• The complete bipartite graph, Kn,m, when the size is even.

• The wheel, Wn, for n ≡ 0, 1, 2(mod 4).

• The cycle, Cn, for n ≡ 0(mod 4).

• The n-sided prism, when n ≡ 0(mod 4).

• The corona, U �mK1, where m is odd and U is any unicyclic graph.

• The corona, K1 �G, where G has odd size.

• The circulant graphs described before.

In Figure 8 we show an example of this construction where G is the ladder P4 × P2.

Figure 8. Cordial labeling of the splitting graph S2(P4 × P2)

4. Cordial Super Subdivision Graphs

Sethuraman and Selvaraju [13] define a graph H to be a super subdivision of a graph G, if every
edge uv of G is replaced by K2,m (m may vary for each edge) by identifying u and v with the two
vertices in K2,m that form the partite set with exactly two elements. Some authors have studied the
cordiality of certain super subdivisions of graphs, among the graphs studied we can mention trees,
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complete bipartite graphs, and grids. The interested reader can find a detailed account of these
results in Gallian’ survey [6].

In [14], Sethuraman and Selvaraju proved that when every edge of a graph G is super subdi-
vided using graphs of the form K2,2m, the resulting graph is cordial. The following results are
devoted to cordial labelings of super subdivisions of graphs using K2,2m+1 instead of K2,2m.

Lemma 4.1. The complete bipartite graph K2,2m+1 has a binary labeling f1 such that vf1(0) −
vf1(1) = 3 and ef1(0)− ef1(1) = 2.

Proof. Let A = {u1, u2} and B = {v1, v2, ..., v2m+1} be the two partite sets of V (K2,2m+1). Let
f1 be the binary labeling of K2,2m+1 defined as f1(u1) = f1(u2) = 0, f1(vi) = 0 if 1 ≤ i ≤ m+1,
and f1(vi) = 1 if m + 2 ≤ i ≤ 2m + 1. Thus, for every 1 ≤ i ≤ m + 1, the edges u1vi and
u2vi have weight 0, and for every m + 2 ≤ i ≤ 2m + 1, the edges u1vi and u2vi have weight 1.
Therefore, vf1(0) = m+ 3, vf1(1) = m, ef1(0) = 2m+ 2, and ef1(1) = 2m.

Lemma 4.2. The complete bipartite graph K2,2m+1 has a binary labeling f2 such that vf2(0) −
vf2(1) = 1 and ef2(0)− ef2(1) = −2.

Proof. Let A and B be defined as in Lemma 4.1. Let f2 be the binary labeling of K2,2m+1 defined
as f2(u1) = f2(u2) = 0, f2(vi) = 0 when 1 ≤ i ≤ m, and f2(vi) = 1 when m+ 1 ≤ i ≤ 2m+ 1.
Thus, for every 1 ≤ i ≤ m, the edges u1vi and u2vi have weight 0; for every m+1 ≤ i ≤ 2m+1,
the edges u1vi and u2vi have weight 1. Therefore, vf2(0) = m+ 2, vf2(1) = m+ 1, ef2(0) = 2m,
and ef2(1) = 2m+ 2.

Lemma 4.3. The complete bipartite graph K2,2m+1 has a binary labeling f3 such that vf3(0) −
vf3(1) = 1 and ef3(0)− ef3(1) = 0.

Proof. Let A and B be defined as in Lemma 4.1. Let f3 be the binary labeling of K2,2m+1 defined
as f3(u1) = 0, f3(u2) = 1, f3(vi) = 0 for 1 ≤ i ≤ m+1, and f3(vi) = 1 when m+2 ≤ i ≤ 2m+1.
Thus, for every 1 ≤ i ≤ m + 1, the edges u1vi have weight 0 and the edges u2vi have weight 1;
for every m + 2 ≤ i ≤ 2m + 1, the edges u1vi have weight 1 and the edges u2vi have weight 0.
Therefore, vf3(0) = m+ 2, vf3(1) = m+ 1, ef3(0) = 2m+ 1, and ef3(1) = 2m+ 1.

Let E be the family of all graphs for which there exists a binary labeling f such that |vf (0) −
vf (1)| ≤ 1 and ef (0) is even. The following graphs are members of E :

• Any balanced bipartite graph.

• If G is a balanced bipartite graph of even order, then nK1 +G ∈ E for all n ≥ 1.

• Kn is a member of E for all n ≡ 0, 1, 2(mod 4). Suppose that n is even and n
2

vertices of Kn

are labeled 0, then there are exactly n(n−2)
4

edges of weight 0 in Kn; since n is even, n(n−2)
4

is also even. When n ≡ 1(mod 4), exactly dn
2
e vertices of Kn are labeled 0, so the number

of edges of weight 0 is given by 4k2 where n = 4k + 1.
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• The Cartesian product Pn × Pm when n or m is odd. This graph is bipartite, so by adding
any even number of edges whose end-vertices have the same label, we produce a new graph
with an even number of edges of weight 0.

In the next theorem we prove that every super subdivision H of a connected graph G ∈ E is
cordial when the edges of G are replaced by graphs of the form K2,2m+1.

Theorem 4.1. Every super subdivision H of a connected graph G ∈ E is cordial when every edge
of G is replaced with a complete bipartite graph of the form K2,2m+1.

Proof. Suppose G ∈ E , then there is a binary labeling f of G such that |vf (0) − vf (1)| ≤ 1 and
ef (0) is even. Let E(G) = {e1, e2, . . . , en}, we denote by K2,2mi+1 the complete bipartite graph
used to super subdivide the edge ei of G.

Let k be the number of edges of G whose end-vertices are labeled 0. Without loss of generality,
we assume that both end-vertices of ei have label 0 when 1 ≤ i ≤ k, and have label 1 when
k + 1 ≤ i ≤ ef (0), and that when ef (0) + 1 ≤ i ≤ n, the end-vertices of ei have different
labels. We analyze two cases according to the parity of k. The labelings fi are those defined in the
previous lemmas.
Case 1: When k is even.

For every odd value of i, 1 ≤ i ≤ k, K2,2mi+1 is labeled using f1 and K2,2mi+1+1 is labeled
using f2. In this way, the number of new vertices as well as the number of edges, labeled 0 and
1, are totally balanced in the subgraph of H induced by K2,2mi+1 and K2,2mi+1+1. For every odd
value of i, k+1 ≤ i ≤ ef (0), K2,2mi+1 is labeled using f 1 and K2,2mi+1+1 is labeled using f 2, and
the result is the same. Finally, for every odd value of i, ef (0) + 1 ≤ i ≤ n, K2,2mi+1 is labeled
using f3 and K2,2mi+1+1 is labeled using f 3. Recall that the labelings f3 and f 3 induce the same
amount of edges of weight 0 than edges of weight 1. If ef (1) is even, we have that the number of
new vertices, in the subgraph of H induced by K2,2mi+1 and K2,2mi+1+1, labeled 0 is the same as
the number of new vertices labeled 1. Thus, the resulting labeling of H is cordial. If ef (1) is odd,
we proceed essentially in the same form, except that we select the labeling of K2,2mi+1 based on
the value of vf (0)− vf (1). Ifvf (0)− vf (1) = 1, we proceed as before, but if vf (0)− vf (1) = −1,
K2,2mi+1 is labeled using f 2 and K2,2mi+1+1 is labeled using f2. Anyway, the final labeling of H
induces the same number of edges of weight 0 and 1, using the same number of vertices labeled 0
and vertices labeled 1 when vf (0)− vf (1) = 1, or one more vertex labeled 1. So, H is cordial.
Case 2: When k is odd.

We proceed as before, that is, for every odd value of i, 1 ≤ i ≤ k, K2,2mi+1 is labeled using
f1 and K2,2mi+1+1 is labeled using f2. Up to this point, we have one more new vertex labeled 0
and two more edges of weight 0. In order to compensate this disparity, we apply the labeling f 2 to
K2,2mk+1. In this way, we have now, the same number of edges of weight 0 than edges of weight
1; however we have two more vertices labeled 0 than vertices labeled 1; this is going to be fixed
when we super subdivide the edges of weight 1 of G. For every odd value of i, k + 2 ≤ i ≤ ef (0),
K2,2mi+1 is labeled using f 1 and K2,2mi+1+1 is labeled using f 2. Thus, when all the edges of weight
0 in G have been super subdivided, we get that the new edges are totally balanced in terms of their
weights and that there are two more new vertices with label 0. Since G is connected, G has at
least one edge of weight 1. We call this edge eef (0)+1, and K2,2mef (0)+1

is labeled using f 3. In this
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way, the edges are balanced and there is one more vertex labeled 0 than vertices labeled 1. For
every even value of i, ef (0) + 2 ≤ i ≤ n, K2,2mi+1 is labeled using f 3 and K2,2mi+1+1 is labeled
using f3. In this way we have the same number of edges of weight 0 than edges of weight 1. If
ef (0)− ef (1) is even, the number of vertices labeled 0 in H equals the number of vertices labeled
1; if ef (0) − ef (1) is odd, the number of vertices labeled 1 is one unit larger than the number of
vertices labeled 0. Therefore, the resulting labeling of H is cordial.

In Figure 9 we show an example of a cordial super subdivision of the graph C6.

Figure 9. A cordial super subdivision of C6

The following corollary is obtained by combining Theorem 16 and the result of Sethuraman
and Selvaraju [14].

Corollary 4.1. If G ∈ E , then every super subdivision H of G is cordial when every edge of G is
replaced with a complete bipartite graph of the form K2,2m+1 or K2,2m.

Remark 4.1. By using m = 1 in the previous theorem, we have that the subdivision of all the edges
of G ∈ E produces a cordial graph homeomorphic to G. The following question raises naturally.
If H is homeomorphic to G ∈ E , is H cordial?

Corollary 4.2. If n 6≡ 3(mod 4), then the graph H obtained by subdividing every edge of Kn is
cordial.

Proof. Suppose that n ≡ 3(mod 4), then n = 4k+3, for some integer k. The size of the subdivision
H of Kn is 16k2 + 20k + 6 ≡ 2(mod 4). Since Kn is Eulerian, H is also Eulerian and has size
congruent to 2(mod 4), therefore is not cordial.

Suppose now that n 6≡ 3(mod 4). The vertices of Kn are separated in two sets, one with
bn
2
c vertices labeled 1 by f , the other vertices labeled 0 by f . Thus, vf (0) − vf (1) ≤ 1. When

n ≡ 0(mod 4), n = 4k for some positive integer k. Here every set induces k(2k − 1) edges of
weight 0. Hence, Kn has an even number of edges of weight 0. Therefore H is cordial. When
n ≡ 1(mod 4), n = 4k + 1 for some positive integer k. The first set induces k(2k − 1) edges of
weight 0 while the second set induces k(2k + 1) edges of weight 0. Then, Kn has 4k2 edges of
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weight 0, which implies that H is cordial. Finally, when n ≡ 2(mod 4), n = 4k + 2 for some
positive integer k. Now, each set induces k(2k+1) edges of weight 0, and Kn has an even number
of edges of weight 0. Therefore H is cordial.

In Figure 10 we show a cordial subdivision of K5 constructed on the binary labeling of K5 exhib-
ited on the left.

Figure 10. Cordial labeling of a subdivision of K5

5. Cordial Join Graphs

In this section we study the cordiality of the join of two cordial graphs. Let g and h be cordial
labelings of G and H , respectively. Let F = G + H , thus V (F ) = V (G) ∪ V (H) and E(F ) =
E(G) ∪E(H) ∪ {uv : u ∈ V (G), v ∈ V (G)}. Consider the binary labeling f of V (F ) defined by

f(w) =

{
g(w) if w ∈ V (G),
h(w) if w ∈ V (H).

We assume that one of the graphs, G or H , has even order. Without loss of generality, suppose
that vg(0) = vg(1) = k. If vh(0) = vh(1) = l, then there are 4kl edges of the form uv in F ,
with u ∈ V (G) and v ∈ V (H), and exactly 2kl of them have weight 0 under f . If vh(0) = l and
vh(1) = l + 1 or vh(0) = l + 1 and vh(1) = l, then there are 4kl + 2k edges of the form uv in
F , and exactly half of them have weight 0 under f . Therefore, to study the cordiality of F we just
need to analyze the values eg(i) and eh(i) for i ∈ {0, 1}, because |vf (0) − vf (1)| ≤ 1. Thus, f
is a cordial labeling of F when eg(0) = eg(1), or eg(0) = eg(1) + 1 and eh(0) 6= eg(1) + 1, or
eg(0) + 1 = eg(1) and eh(0) + 1 6= eg(1).

Suppose now that both, G and H , have odd order. If vg(0) = k + 1 and vg(1) = k, then
vh(0) = l and vh(1) = l+1. The number of edges of the form uv in F , is given by 4kl+2k+2l+1,
and exactly 2kl + k + l of them have weight 0 under f , that is, there is one more edge of weight 1
among the edges of the form uv.

Similarly, to determine whether f is cordial, we just need to analyze the values of eg(i) and
eh(i), for i ∈ {0, 1}, because now vf (0) = vf (1). Hence f is always cordial, except when:
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• eg(0) = eg(1) and eh(0) + 1 = eh(1), or

• eg(0) + 1 = eg(1) and eh(0) = eh(1) or eh(0) + 1 = eh(1).

Thus, we have proven the following general result about the cordiality of the join of two cordial
graphs.

Theorem 5.1. The join of two cordial graphs, G and H , is cordial if any of the following holds:

1. One of G and H has even order and even size.
2. Both G and H have odd order and even size.
3. Both G and H have odd order, odd size, and the dominating weight in both graphs is not 1.
4. G has even order, odd size, and the dominating weight on both graphs is not the same.
5. Both G and H have odd order, but only one has odd size, and the dominating weight is 0.

6. Cordial One-Point Union Graphs

Let G be a graph and v ∈ V (G), the one-point union of t copies of G, denoted by G(t), is
the graph obtained from t copies of G that share the vertex v. Shee and Ho [8] investigated the
cordiality of several graphs of this form, such as C

(t)
m , K(t)

m , W (t)
m , F (t)

m , and Fl
(t)
m . Andar et al.

[1], also investigated the one-point union of graphs, where G is a helm, closed helm, flower, gear,
sunflower, or a ply. See [6] for more details about these contributions.

The following results show cordial labelings of graphs of the form G(t), where G is any cordial
graph of odd order and even size, or G is a special type of cordial graph of odd order and odd size.
Thus, some of the results mentioned above are just specific cases of these two theorems.

Among the families of cordial graphs of odd order and even size we have:

• C
(4t)
3 [3].

• Km,n when m is odd and n is even [2].

• Any cactus of size n ≡ 0(mod 4) whose blocks are cycles [9].

• mK1 +G, where G is a cordial graph of even order and m is an odd positive integer.

• G� 2nK1, where G is a cordial graph of odd order and even size.

Theorem 6.1. If G is a cordial graph of odd order and even size, then there is a one-point union
of t copies of G that is cordial.

Proof. Without loss of generality we assume that vf (0) − vf (1) = 1. Let v ∈ V (G) such that
f(v) = 0. Identifying the corresponding vertices v of each copy of G we have a one-point union
graph with a binary labeling g. We claim that g is a cordial labeling. In fact, in every copy of
G− v, vg(0) = vg(1), so in the one-point union graph, vg(0)− vg(1) = 1; since ef (0)− ef (1) = 0
and there are no new edges, eg(0)− eg(1) = 0. Therefore, the labeling g of G(t) is cordial.
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G :

Figure 11. Cordial one-point union graphs obtained from a cordial base graph G

In Figure 11 we show three examples of this one-point union that use the same graph G.
Let S be the class of all cordial graphs of odd order and odd size such that for any G ∈ S

there exist two cordial labelings, f and g, such that ef (0)− ef (1) = 1, eg(0)− eg(1) = −1, and a
vertex v ∈ V (G) for which f(v) = g(v) = 0.

The following two families of graphs correspond to members of S .

• Let n ≥ 3 be an odd integer and let G be the graph obtained from K2,n by adding an edge
connecting any pair of vertices in the largest stable set of K2,n; thus, this graph has odd
order and odd size. We claim that G ∈ S . In fact, if V (G) = {u1, u2, v1, v2, . . . , vn} and
E(G) = {uivj : i = 1, 2 and j = 1, 2, . . . , n}∪{vn−1vn}, then the labeling f of the vertices
of G defined by f(u1) = 1, f(u2) = 0, and

f(vj) =

{
1 if 1 ≤ j ≤ bn

2
c,

0 if bn
2
c < j ≤ n,

is cordial where vf (0) − vf (1) = 1 and ef (0) − ef (1) = 1 due to the fact that f(vn−1) =
f(vn) = 0.

Consider now the labeling g of G defined by g(u1) = 1, g(u2) = 0, and

g(vj) =

{
1 if j is odd,
0 if j is even.

This labeling is also cordial; note that vg(0) − vg(1) = 1 and eg(0) − eg(1) = −1, because
g(vn−1) = 1 and g(vn) = 0. When these labelings are restricted to K2,n they are the same as
the cordial labeling of this graph introduced by Cahit in [2]. Note that essentially all vertices
of G, except vn−1, have the same label with both labelings.

• Let Cn be a cycle of odd order where n ≥ 5. Label the vertices of Cn using the cordial
labelings given in [2]. When n ≡ 1(mod 4), let G be the outerplanar graph obtained from Cn

by adding the edges v1v3 and v1vn−1, the induced labeling of this graph satisfies e(0)−e(1) =
−1. Let G′ be the outerplanar graph obtained from Cn by adding the edges v2v4 and v2vn.
Clearly, G ∼= G′ and the induced labeling of this graph satisfies e(0)− e(1) = 1. So we have
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that G ∈ S . When n ≡ 3(mod 4), the graph G is obtained, similarly, by adding the edges
v1v4 and v1vn−2, while G′ is obtained by adding the edges v2v5 and v2vn−1.

We claim that there are cordial one-point union graphs obtained using graphs from S .

Theorem 6.2. If G ∈ S , then there is a one-point union of G that is cordial.

Proof. Without loss of generality, we assume that vf (0) − vf (1) = 1 and vg(0) − vg(1) = 1.
Consider t copies of G, where d t

2
e of these copies are labeled using f and b t

2
c are labeled using g.

Suppose that v ∈ V (G) has label 0 under both labelings, then we identify the vertex v of each copy
of G to produce the one-point union graph. Let h denote the binary labeling of the resulting one-
point union graph. Thus, vh(0)−vh(1) = 1 and eh(0)−eh(1) = 1 if t is odd and eh(0)−eh(1) = 0
when t is even. Therefore, h is cordial regardless the parity of t.

In Figure 12, we show an example of this one-point union.

Figure 12. Cordial labeling of a one-point union graph
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