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Abstract

We consider a set D ⊆ V (G) which dominate G and for every two distinct vertices x, y ∈ V (G) \
D, the open neighborhood of x and y in D are different. The minimum cardinality of D is called
the locating-dominating number of G. In this paper, we determine an exact value of the locating-
dominating number of comb product graphs of any two connected graphs of order at least two.
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1. Introduction

In this paper, all graphs are assumed to be connected, simple, finite, and undirected. For a
graph G and a vertex x ∈ V (G), we recall that the open neighborhood of x in G is defined as
NG(x) = {y ∈ V (G)|xy ∈ E(G)}. Now, we consider a subset S of V (G). In case every vertex
x ∈ V (G)\S satisfies NG(x) ∩ S 6= ∅, we say the set S as a dominating set of G. The domination
number of G refers to the minimum cardinality of S, and denoted by γ(G). The survey of this
domination parameter can be detailed seen in [8, 9]. The concept of dominating set give us an
information of a minimum set that can be the detector for every vertex which is adjacent to this
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set of vertices. But from this concept the detectors cannot distinguish every vertices in G. For this
purpose, we will use the concept of location.

Now, we consider a dominating set S where for every two vertices x, y ∈ V (G)\S, the open
neighborhood of x and y in S are different. The set S then we called as a locating-dominating set
of G. The locating-dominating number, denoted by λ(G), is the minimum cardinality of locating-
dominating sets of graph G. Therefore, by the definitions, it follows γ(G) ≤ λ(G). This concept
was firstly introduced by Slater [16, 17].

In [15], it has been proven that determining the locating-dominating number of a graph is an
NP-complete problem. There is no efficient algorithm to find the locating-dominating number
of general graphs. However, Henning and Oellermann [10] have been characterized all graphs
having locating-dominating number n − 1 and n − 2. Meanwhile, Caceres et al. [2] provided 16
non-isomorphic graphs having locating-dominating number two. Some authors also have proven
the locating-dominating number of certain classes of graphs. Interested readers are referred to a
number of relevant literature that are mentioned in the bibliography section, including [2, 4, 6, 7].

Some authors also have determined the locating-dominating number of graphs obtained from a
product graphs. Canoy and Malacas [3] provided the bounds for the locating-dominating number
of corona product graphs. They also investigated a locating-dominating set of the composition
product graphs. Moreover, they determined an exact value of the locating-dominating number of
composition product graphs between G and H where G is a connected totally point determining
graph and H is a non-trivial connected graph.

We are interested to apply the locating-dominating concept to a product graphs. In this paper,
we consider the comb product of connected graphs G and H and both graphs have order at least
two. This product graphs is constructed as follows.

1. Given two connected graphs G and H .
2. Choose a vertex in a graph H , say it o.
3. Make |V (G)| copies of H .
4. Identified the i-th vertex of G to the vertex o in the i-th copy of H

By the construction above, we can say that V (G �o H) = {(x, u)|x ∈ V (G), u ∈ V (H)} and
(x, u)(y, v) ∈ E(G�oH) if (x = y and uv ∈ E(H)) or (xy ∈ E(G) and u = v = o). In chemistry
[1], some classes of chemical graphs can be considered as the comb product graphs. This product
graphs has been widely investigated in many areas, including metric distance problems [5, 13, 14]
and graph labeling problems [11, 12].

For the purpose to determine the locating-dominating number of G �o H , we will use some
definitions. For o ∈ V (H) and x ∈ V (G), we define Go = {(x, o)|x ∈ V (G)} and Hx =
{(x, u)|u ∈ V (H)}. We also define H−x = Hx \ {(x, o)}. Note that, since the order of H is
at least 2, it follows H−x is a non-empty set. Furthermore, if z ∈ H−x , then NG�oH(z) ⊆ Hx.
For S ⊆ V (G), we also use the notation G[S] which is a maximal subgraph of G induced by all
vertices of S.

2. Main Results

From now on, every connected graphs G and H stated here are not trivial graph. In order to
determine λ(G �o H), we consider Hx for every x ∈ V (G). We also define W as a locating-
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dominating set of G�oH and Wx = W ∩Hx. In Lemma 2.1, we show that Hx contributes at least
λ(H)− 1 vertices in W .

Lemma 2.1. For every vertex x ∈ V (G), W ∩Hx 6= ∅. Moreover, |W ∩Hx| ≥ λ(H)− 1.

Proof. For x ∈ V (G), ifW∩Hx = ∅, then there exists a vertex z ∈ H−x such thatNG�oH(z)∩W =
∅, a contradiction.

Now, suppose that we have a vertex x ∈ V (G) such that |Wx| ≤ λ(H)−2 whereWx = W∩Hx.
So, two different vertices in H−x are not in Wx, let them be a and b. These two vertices satisfy
NG�oH(a) ∩ Hx = ∅, NG�oH(b) ∩ Hx = ∅, or NG�oH(a) ∩Wx = NG�oH(b) ∩Wx. Therefore,
we obtain NG�oH(a) ∩W = NG�oH(a) ∩Wx = ∅, NG�oH(b) ∩W = NG�oH(b) ∩Wx = ∅, or
NG�oH(a) ∩W = NG�oH(a) ∩Wx = NG�oH(b) ∩Wx = NG�oH(b) ∩W , a contradiction.

From the proof of Lemma 2.1 above, for x ∈ V (G), if z ∈ H−x , then NG�oH(z) ⊆ Hx.
The only vertex in Hx which is adjacent to a vertex outside Hx is (x, o). So, we have a direct
consequences in corollary below.

Corollary 2.1. If |Wx| = λ(H)−1, then (x, o) /∈ Wx. Furthermore, (Wx∪{(x, o)}) is a locating-
dominating set of graph (G�o H)[Hx].

By Lemma 2.1 above, the lower bound of λ(G�oH) is obtained, that is λ(G�oH) ≥ |V (G)| ·
(λ(H)− 1). Note that, if λ(G�o H) = |V (G)| · (λ(H)− 1) and W is a locating-dominating set
of G�o H where |W | = |V (G)| · (λ(H)− 1), then by Corollary 2.1, all vertices in Go are not in
W . Since for every x ∈ V (G), Hx contributes λ(H)−1 vertices in W , it may be happen that there
exists a vertex z ∈ H−x such thatNG�oH(z)∩W = NG�oH((x, o))∩W orNG�oH((x, o))∩W = ∅.
So, we must add more vertices to W such that a new set is a locating-dominating set of G�o H .

Lemma 2.2. If a vertex x ∈ V (G) satisfies |Wx| = λ(H)− 1, then NG�oH((x, o))∩Go ∩W 6= ∅.

Proof. Since |Wx| = λ(H)− 1, then Wx is not a locating-dominating set of (G�oH)[Hx] and by
Corollary 2.1, (x, o) /∈ Wx. Therefore, there exists a vertex a ∈ H−x such that NG�oH(a) ∩Wx =
NG�oH((x, o)) ∩Wx or NG�oH((x, o)) ∩Wx = ∅. Since W is a locating-dominating set and the
only vertex of Hx which is adjacent to vertex in V (G�o H) \Hx is (x, o), there must be a vertex
y ∈ W which is adjacent to (x, o). Note that, y is an element of Go.

Now, in Lemma 2.3 below, we consider that the set Hx can contribute λ(H) vertices in a
locating-dominating set of G�o H .

Lemma 2.3. Let B be a locating-dominating set of H with λ(H) vertices. For x ∈ V (G), let
Bx = {(x, v)|x ∈ V (G), v ∈ B}. Then D =

⋃
x∈V (G)Bx is a locating-dominating set of G�o H .

Proof. Let us consider a, b ∈ V (G �o H) \ D where a 6= b. If both vertices a, b ∈ Hx for
x ∈ V (G), then it is clear that ∅ 6= NG�oH(a) ∩ Bx 6= NG�oH(b) ∩ Bx 6= ∅ which implies
∅ 6= NG�oH(a) ∩D 6= NG�oH(b) ∩D 6= ∅.

Now, we assume that a ∈ Hx and b ∈ Hy with x, y ∈ V (G) and x 6= y. Then there exist two
different vertices u ∈ Bx and v ∈ By such that ua, vb ∈ E(G �o H) but ub, va /∈ E(G �o H).
Therefore, ∅ 6= NG�oH(a) ∩D 6= NG�oH(b) ∩D 6= ∅.
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According to Lemmas 2.1 and 2.3 above, we obtain some direct corollaries below.

Corollary 2.2. LetG andH be a connected graphs of order at least 2. Then |V (G)|·(λ(H)−1) ≤
λ(G�o H) ≤ |V (G)| · λ(H).

Corollary 2.3. Let W be a locating-dominating set of G �o H where |W | = λ(G �o H). For
x ∈ V (G), let Wx = W ∩Hx. Then either |Wx| = λ(H)− 1 or |Wx| = λ(H).

Let o ∈ V (H) be an identifying vertex. Let W be a locating-dominating set of G �o H
where |W | = λ(G �o H). By Corollary 2.3, for x ∈ V (G), the set Wx = W ∩ Hx satisfies
|Wx| = λ(H)− 1 or |Wx| = λ(H). So, we define

T+ = {x ∈ V (G)||Wx| = λ(H)} (1)

and
T− = {x ∈ V (G)||Wx| = λ(H)− 1}. (2)

Note that T+ ∩ T− = ∅ and T+ ∪ T− = V (G). Therefore, we obtain the lemma below.

Lemma 2.4. Let W be a locating-dominating set of G�o H where |W | = λ(G�o H). Then

|W | = (|T+| · λ(H)) + (|T−| · λ(H)− 1)

Considering Corollary 2.1, Lemma 2.2, and Corollary 2.3 above, we will characterize graph H
based on its identifying vertex. Let o ∈ V (H) be an identifying vertex. We say that a graph H is
of:

• Type Ao if there exists a locating-dominating set D of H \ {o} with λ(H) − 1 vertices and
there exists v ∈ V (H) \ {o} such that ∅ 6= NH(o) ∩D = NH(v) ∩D 6= ∅.

• Type Bo if every locating-dominating set D of H \ {o} with λ(H) − 1 vertices, satisfies
NH(o) ∩D = ∅.

• Type Co if H is neither of type Ao nor Bo.

By characterization above, we can say that every locating-dominating set D of H \ {o} of type of
Co consists of at least λ(H) vertices. Note that, the type of H is based on the identifying vertex
o chosen. For example, let H with the identifying vertex o ∈ V (H) be of type Ao. If we choose
another identifying vertex a ∈ V (H) \ {o}, the type of H may be Aa, Ba, or Ca.

Now, we will provide the lower bound of λ(G�o H) for type of Ao and Bo of H .

Lemma 2.5. Let G and H be connected graphs of order at least 2. Let o ∈ V (H).

1. If H is of type Ao, then λ(G�o H) ≥ γ(G) + |V (G)| · (λ(H)− 1).
2. If H is of type Bo, then λ(G�o H) ≥ λ(G) + |V (G)| · (λ(H)− 1).

Proof. We recall the sets T+ and T− defining on (1) and (2), respectively.
Let X = Go ∩W . By Corollary 2.1, for x ∈ V (G), if |Wx| = λ(H) − 1, then (x, o) /∈ Wx.

Thus, (T− ∩W ) = ∅ and X should be a subset of T+. Moreover, Lemma 2.2 provides that for
every x ∈ T−, NG�oH((x, o)) ∩X 6= ∅. Then NG�oH((x, o)) ∩ T+ 6= ∅.
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1. If H is of type Ao, then T+ should dominate vertices in Go, which implies |T+| ≥ γ(G).
Then by Lemma 2.4, we obtain

|W | = |T+| · λ(H) + |T−| · (λ(H)− 1)

= |T+| · λ(H) + (|V (G)| − |T+|) · (λ(H)− 1)

= |T+|+ |V (G)| · (λ(H)− 1)

≥ γ(G) + |V (G)| · (λ(H)− 1).

2. If H is of type Bo, then T+ should locate and dominate vertices in Go, which implies |T+| ≥
λ(G). Then by Lemma 2.4, we obtain

|W | = |T+| · λ(H) + |T−| · (λ(H)− 1)

= |T+| · λ(H) + (|V (G)| − |T+|) · (λ(H)− 1)

= |T+|+ |V (G)| · (λ(H)− 1)

≥ λ(G) + |V (G)| · (λ(H)− 1).

Now, we are ready to determine the locating-dominating number of G �o H for connected
graphs G and H of order at least 2, with an identifying vertex o ∈ V (H).

Theorem 2.1. Let G and H be a non-trivial connected graphs. Let o ∈ V (H). Then

λ(G�o H) =


γ(G) + |V (G)| · (λ(H)− 1), if H is of type Ao,
λ(G) + |V (G)| · (λ(H)− 1), if H is of type Bo,
|V (G)| · λ(H), if H is of type Co.

Proof. We distinguish two cases.
Case 1. H is of type Ao or of type Bo.

By Lemma 2.5,

• ifH is of typeAo, then we only need to show that λ(G�oH) ≤ γ(G)+ |V (G)| ·(λ(H)−1);

• ifH is of type Bo, then we only need to show that λ(G�oH) ≤ λ(G)+ |V (G)| ·(λ(H)−1).

Now, let us consider a locating-dominating set D of H \ {o} with λ(H)− 1 vertices where

• ifH is of typeAo, then there exists v ∈ V (H)\{o} such that ∅ 6= NH(o)∩D = NH(v)∩D 6=
∅;

• if H is of type Bo, then NH(o) ∩D = ∅.

For x ∈ V (G), we define Dx = {(x, u)|u ∈ D}. Let X ⊆ V (G) be a dominating set of G
with γ(G) vertices if H is of type Ao and be a locating-dominating set of G with λ(G) vertices if
H is of type Bo. We also define Xo = {(a, o)|a ∈ X}. Let S = Xo ∪

⋃
x∈V (G)Dx. We will show

that S is a locating-dominating set of G�o H .
Let a and b be two distinct vertices in V (G�o H) \ S.
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• a, b ∈ Hx for x ∈ V (G)

If a, b ∈ Hx \{(x, o)} for x ∈ V (G), then it is clear that ∅ 6= NG�oH(a)∩Dx 6= NG�oH(b)∩
Dx 6= ∅. If a = (x, o), then note that a is the only vertex in Hx which is adjacent to a vertex
in Xo. Therefore, we obtain ∅ 6= NG�oH(a) ∩ S 6= NG�oH(b) ∩ S 6= ∅.

• a ∈ Hx and b ∈ Hy for x, y ∈ V (G) and x 6= y

We distinguish two cases.

1. a ∈ Hx \ {(x, o)} and b ∈ Hy \ {(y, o)}
Then there exists u ∈ Dx and v ∈ Dy such that au, bv ∈ E(G �o H) but av, bu /∈
E(G�o H).

2. a = (x, o) or b = (y, o)
If H is of type Ao, then there exist u ∈ Dx and v ∈ Dy such that au, bv ∈ E(G�o H)
but av, bu /∈ E(G�oH). Now, we assume H is of type Bo. Let a = (x, o). Then there
exists a vertex z ∈ Xo such that az ∈ E(G�o H) but bz /∈ E(G�o H).

According two cases above, we obtain ∅ 6= NG�oH(x) ∩ S 6= NG�oH(y) ∩ S 6= ∅.

Case 2. H is of type Co.
By Corollary 2.2, we only need to show that λ(G �o H) ≥ |V (G)| · λ(H). We recall the sets

T+ and T− defining on (1) and (2), respectively. Let D be a locating-dominating set of H \ {o}.
Note that |D| ≥ λ(H). Let W be a locating-dominating set of G �o H and for x ∈ V (G),
Wx = W ∩Hx. Since H is of type Co, by considering Corollary 2.3, then |Wx| ≥ |D| = λ(H) for
every x ∈ V (G). So, we can say |T−| = 0. By Lemma 2.4, we have |W | ≥ |V (G)| · λ(H).
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