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Abstract

Given graph G(V,E). We use the notion of total k-labeling which is edge irregular. The notion
of total edge irregularity strength (tes) of graph G means the minimum integer k used in the edge
irregular total k-labeling of G. A cactus graph G is a connected graph where no edge lies in more
than one cycle. A cactus graph consisting of some blocks where each block is cycle Cn with same
size n is named an n-uniform cactus graph. If each cycle of the cactus graph has no more than
two cut-vertices and each cut-vertex is shared by exactly two cycles, then G is called n-uniform
cactus chain graph. In this paper, we determine tes of n-uniform cactus chain graphs C(Cr

n) of
length r for some n ≡ 0 mod 3. We also investigate tes of related chain graphs, i.e. tadpole
chain graphs Tr(4, n) and Tr(5, n) of length r. Our results are as follows: tes(C(Cr

n)) =
⌈
nr+2
3

⌉
;

tes(Tr(4, n)) =
⌈
(4+n)r+2

3

⌉
; and tes(Tr(5, n)) =

⌈
(5+n)r+2

3

⌉
.

Keywords: edge irregular total k-labeling, total edge irregularity strength, uniform, cactus chain, tadpole graph.
Mathematics Subject Classification: 05C78
DOI: 10.19184/ijc.2020.4.1.6

Received: 5 June 2019, Revised: 14 April 2020, Accepted: 27 May 2020.

53



www.ijc.or.id

Computing total edge irregularity strength of ... | I. Rosyida and D. Indriati

1. Introduction

Let G = (V,E) be a finite, undirected, and simple graph. An edge irregular total k-labeling of
G is a function f : V ∪ E → {1, 2, . . . , k} that satisfies the weight wt(uv) 6= wt(xy) for every
two different edges uv and xy in E(G) with wt(uv) = f(u) + f(v) + f(uv) [4]. The minimum
integer k in total labeling f is called the total edge irregularity strength of G, symbolized by tes(G).
Further, Bača et al. ([4], [5]) also provided the lower and upper bounds:⌈

|E(G)|+ 2

3

⌉
≤ tes(G) ≤ |E|. (1)

Based on inequality (1), Ivanc̆o and Jendroľ proposed a conjecture as follows [11]:

tes(G) = max

{⌈
|E(G)|+ 2

3

⌉
,

⌈
∆(G) + 1

2

⌉}
.

Furthermore, some researchers have found exact values of tes of some graph classes. Readers
could refer to [7], [11], [12], [14], [15] [10], [9], [18], [1], [8], [2], [13], and [16].

Many graph classes have used to model real problems. Such as in chemical structures, the
graph classes that commonly used are cactus graphs, where atoms represent vertices and chemical
bonds represent edges of the graphs ([6], [3], [17]). A cactus graph G is a connected graph in which
each edge lies on exactly one cycle. In other words, the cactus graph comprises some blocks where
each block is either an edge or a cycle. The cactus graph is named n-uniform if each block is a
cycle with the same order n. If each cycle of cactus graph G has at most two cut-vertices and each
cut-vertex is shared by exactly two cycles, then G is called n-uniform cactus chain graph. The
number of cycles of the cactus chain graph indicates the length of the chain graph.

Further, a tadpole graph T (m,n) is graph which consists of a cycle graph Cm and a path graph
Pn which is connected with a bridge. Whereas, a tadpole chain graph is a chain graph which have
tadpole graphs in all blocks. In this paper, we investigate tes of some n-uniform cactus chain
graphs C(Cr

n) of length r for some n ≡ 0 mod 3 and tes of tadpole chain graphs Tr(4, n) and
Tr(5, n).

2. Main Results

The formula for tes of n-uniform cactus chain graph C(Cr
n) is provided in Subsection 2.1.

Meanwhile, the tes of tadpole chain graphs Tr(4, n) and Tr(5, n) are presented in Subsection 2.2.

2.1. n-Uniform Cactus Chain Graphs
The concept of n-uniform cactus chain graphs is given in Definition 2.1.

Definition 2.1. An n-uniform cactus graph G is a cactus graph consisting of some blocks where
each block is cycle Cn of same size n. If each cycle of the cactus graph contains no more than two
cut-vertices and every two blocks has exactly one common cut-vertex, then G is called n-uniform
cactus chain graph. The length of the cactus chain is indicated by the number of cycles in the chain.
The n-uniform cactus chain graphs with length r for any natural number n, denoted by C(Cr

n),
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consists of blocks B1, B2, . . . , Br where vertices on block Bi are
{
ai, u

1
i , u

2
i . . . , u

bn−2
2 c

i , v1i , v
2
i , . . . ,

v
dn−2

2 e
i

}
for i = 1, 2, . . . , r. Vertex ai+1 is a cut vertex between two blocks Bi and Bi+1. It

means that ai+1 lies on two blocks Bi and Bi+1. Meanwhile, the edges of each block Bi are{
aiu

1
i , u

1
iu

2
i , u

2
iu

3
i , . . . , u

bn−2
2 c

i ai+1, aiv
1
i , v

1
i v

2
i , . . . , v

dn−2
2 e

i ai+1

}
.

Further, tes of some n-uniform cactus chain graphs C(Cr
n) for n ≡ 0 mod 3 and length r =

1, 2 is given in Lemma 2.1.

Lemma 2.1. Let C(Cr
n) be n-uniform cactus chain graphs of length r = 1, 2 with n ≡ 0 mod 3

and n ≥ 6. Then,

tes(C(Cr
n)) =

⌈
nr + 2

3

⌉
.

Proof. Let n ≡ 0 mod 3 and n ≥ 6. The n-uniform cactus chain graphs C(Cr
n) with length r =

1, 2 consist of two blocks B1 and B2 whose vertices and edges are
{
ai, u

1
i , u

2
i . . . , u

bn−2
2 c

i , v1i , v
2
i , . . . ,

v
dn−2

2 e
i

}
and

{
aiu

1
i , u

1
iu

2
i , u

2
iu

3
i , . . . , u

bn−2
2 c

i ai+1, aiv
1
i , v

1
i v

2
i , . . . , v

dn−2
2 e

i ai+1

}
, respectively, for i =

1, 2. The cut vertex a2 is located two blocks B1 and B2

Based on (1), the bound of tes (C(Cr
n)) is as follows:⌈

nr + 2

3

⌉
≤ tes(C(Cr

n)) ≤ nr.

To prove tes(C(Cr
n)) ≤

⌈
nr+2
3

⌉
, we construct a total k-labeling f : V ∪E → {1, 2, . . . , k}with

k =
⌈
nr+2
3

⌉
and show that f satisfies the required properties of an edge irregular total k-labeling.

Let us consider two cases.

Case 1. For n ≡ 3 mod 6 and n ≥ 9.
Labels of vertices are constructed as follows:

f(ai) = n
3
(i− 1) + 1, i = 1, 2.

f(uj
i ) =

{
n
3
(i− 1) + j, 1 ≤ j ≤

⌊
n−2
2

⌋
, n = 9, 15, i = 1, 2

n
3
(i− 1) + j, 1 ≤ j ≤ (n

3
+ 1), n ≥ 21, i = 1, 2.

f(vji ) =

{
n
3
(i− 1) + j, 1 ≤ j ≤

⌈
n−2
2

⌉
, n = 9, i = 1, 2

n
3
(i− 1) + j, 1 ≤ j ≤ n

3
+ 1, n ≥ 15, i = 1, 2.

f(u
n
3
+2

i ) = f(u
n
3
+3

i ) = . . . = f(u
bn−2

2 c
i ) =

⌈
ni+2
3

⌉
, i = 1, 2, for n ≥ 21;

f(v
n
3
+2

i ) = f(v
n
3
+3

i ) = . . . = f(v
dn−2

2 e
i ) =

⌈
ni+2
3

⌉
, i = 1, 2, for n ≥ 15.

Furthermore, we define labels of edges as follows:
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f(aiu
1
i ) = n

3
(i− 1) + 1, i = 1, 2,

f(aiv
1
i ) = n

3
(i− 1) + 3, i = 1, 2.

f

(
ai+1u

bn−2
2 c

i

)
= n

3
(i)− 1, i = 1, 2;

f

(
ai+1v

dn−2
2 e

i

)
= n

3
(i), i = 1, 2,

f(u1
iu

2
i ) = n

3
(i− 1) + 1, i = 1, 2.

f(uj
iu

j+1
i ) =

{
n
3
(i− 1) + 2, i = 1, 2; 2 ≤ j ≤ n

3
− 1, n = 9,

n
3
(i− 1) + 2, i = 1, 2; 2 ≤ j ≤ n

3
, n ≥ 15.

f

(
u

n
3
+j

i u
n
3
+j+1

i

)
= n

3
(i− 1) + 2(j + 1), i = 1, 2, 1 ≤ j ≤

⌊
n−2
2

⌋
− (n

3
+ 1), n ≥ 21.

f(vji v
j+1
i ) =

{
n
3
(i− 1) + 3, i = 1, 2, 1 ≤ j ≤ n

3
, n = 9;

n
3
(i− 1) + 3, i = 1, 2, 1 ≤ j ≤ n

3
+ 1, n ≥ 15;

f(v
n
3
+j

i v
n
3
+j+1

i ) = n
3
(i− 1) + 2j + 1, i = 1, 2, with 2 ≤ j ≤

⌊
n−2
2

⌋
− (n

3
) and n ≥ 21;

By using above labeling, we get the edge weights as follows:

wt(aiu
1
i ) = n(i− 1) + 3, i = 1, 2;

wt(aiv
1
i ) = n(i− 1) + 5, i = 1, 2;

wt

(
ai+1u

bn−2
2 c

i

)
= ni; i = 1, 2, n = 9;

wt

(
ai+1u

bn−2
2 c

i

)
= ni + 1; i = 1, 2, n ≥ 15;

wt

(
ai+1v

dn−2
2 e

i

)
= ni + 2; i = 1, 2, n ≥ 9;

wt(u1
iu

2
i ) = n(i− 1) + 4, i = 1, 2;n ≥ 9;

wt(uj
iu

j+1
i ) = n(i− 1) + 2j + 3, i = 1, 2, with 2 ≤ j ≤ n

3
− 1 and n = 9;

wt(uj
iu

j+1
i ) = n(i− 1) + 2j + 3, i = 1, 2, with 2 ≤ j ≤ n

3
and n ≥ 15;

wt

(
u

n
3
+j

i u
n
3
+j+1

i

)
= 2

⌈
ni+2
3

⌉
+ n

3
(i− 1) + 2(j + 1), i = 1, 2,

with 1 ≤ j ≤
⌊
n−2
2

⌋
− (n

3
+ 1) and n ≥ 21.

wt(vji v
j+1
i ) = n(i− 1) + 2j + 4, i = 1, 2, with 1 ≤ j ≤ n

3
and n ≥ 9;

wt(v
n
3
+j

i v
n
3
+j+1

i ) = 2
⌈
ni+2
3

⌉
+ n

3
(i− 1) + 2j + 1, i = 1, 2,

with 1 ≤ j ≤
⌊
n−2
2

⌋
− (n

3
) and n ≥ 15.

We verify that all labels of vertices and edges are less then or equal to
⌈
nr+2
3

⌉
and the weights of

edges are all distinct. Thus, tes (C(Cr
n)) =

⌈
nr+2
3

⌉
for r = 1, 2, n is odd, n ≥ 9 and n ≡ 0 mod 3.

56



www.ijc.or.id

Computing total edge irregularity strength of ... | I. Rosyida and D. Indriati

Case 2. For n ≡ 0 mod 6, n ≥ 6, and r = 1, 2.
The vertex labels are described as follows:

f(ai) = n
3
(i− 1) + 1, i = 1, 2, n ≥ 6.

f(uj
i ) =

{
n
3
(i− 1) + j, 1 ≤ j ≤ n

3
, i = 1, 2, n = 6;

n
3
(i− 1) + j, 1 ≤ j ≤ (n

3
+ 1), i = 1, 2, n ≥ 12.

f(vji ) =

{
n
3
(i− 1) + j, 1 ≤ j ≤ n

3
, i = 1, 2, n = 6;

n
3
(i− 1) + j, 1 ≤ j ≤ (n

3
+ 1), i = 1, 2, n ≥ 12.

f(u
n
3
+2

i ) = f(u
n
3
+3

i ) = . . . = f(u
(n−2

2 )
i ) =

⌈
ni+2
3

⌉
, i = 1, 2, for n ≥ 18;

f(v
n
3
+2

i ) = f(v
n
3
+3

i ) = . . . = f(v
(n−2

2 )
i ) =

⌈
ni+2
3

⌉
, i = 1, 2, for n ≥ 18.

The edge labels are given as follows:

f(a1iu
1
i = n

3
(i− 1) + 1, i = 1, 2;

f(a1i v
1
i ) = n

3
(i− 1) + 2, i = 1, 2;

f

(
ai+1u

bn−2
2 c

i

)
=

{
n
3
(i)− 1, i = 1, 2, n ≥ 12;

n
3
(i), i = 1, 2, n = 6

f

(
ai+1v

dn−2
2 e

i

)
=

{
n
3
(i), i = 1, 2, n ≥ 12;

n
3
(i) + 1, n = 6.

f(uj
iu

j+1
i ) =

{
n
3
(i− 1) + 2, 1 ≤ j ≤ n

3
, i = 1, 2, n ≥ 12;

1 ≤ j ≤ n
3
− 1, n = 6.

f(vji v
j+1
i ) =

{
n
3
(i− 1) + 3, 1 ≤ j ≤ n

3
, i = 1, 2, n ≥ 12;

1 ≤ j ≤ n
3
− 1, n = 6.

f

(
u

n
3
+j

i u
n
3
+j+1

i

)
= n

3
(i− 1) + 2j + 1, i = 1, 2, 1 ≤ j ≤

⌈
n−2
2

⌉
− (n

3
+ 1) for n ≥ 18.

f(v
n
3
+j

i v
n
3
+j+1

i ) = n
3
(i− 1) + 2(j + 1), i = 1, 2, 1 ≤ j ≤

⌈
n−2
2

⌉
− (n

3
+ 1) for n ≥ 18;

By using the above labeling, we get the weight of edges as follows:

wt(aiu
1
i ) = n(i− 1) + 3, i = 1, 2;n ≥ 6.

wt(aiv
1
i ) = n(i− 1) + 4, i = 1, 2;n ≥ 6.

wt

(
ai+1u

(n−2
2 )

i

)
= ni + 1; i = 1, 2, n ≥ 6;

wt

(
ai+1v

(n−2
2 )

i

)
= ni + 2, i = 1, 2, n ≥ 6;

wt(uj
iu

j+1
i ) = n(i− 1) + 2j + 3, i = 1, 2, 1 ≤ j ≤ n

3
(for n ≥ 12),

and 1 ≤ j ≤ n
3
− 1 (for n = 6);

wt

(
u

n
3
+j

i u
n
3
+j+1

i

)
= 2

⌈
ni+2
3

⌉
+ n

3
(i− 1) + 2j + 1, i = 1, 2,

with 1 ≤ j ≤
⌈
n−2
2

⌉
− (n

3
+ 1), n ≥ 18.
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wt(vji v
j+1
i ) = n(i− 1) + 2j + 4, i = 1, 2, with 1 ≤ j ≤ n

3
for n ≥ 12;

and 1 ≤ j ≤ n
3
− 1 for n = 6;

wt(v
n
3
+j

i v
n
3
+j+1

i ) = 2
⌈
ni+2
3

⌉
+ n

3
(i− 1) + 2(j + 1), i = 1, 2,

with 1 ≤ j ≤
⌈
n−2
2

⌉
− (n

3
+ 1) and n ≥ 18.

So the vertex and edge labels are at most
⌈
nr+2
3

⌉
and each edge has a distinct weight. Thus, tes

(C(Cr
n)) =

⌈
nr+2
3

⌉
for n ≡ 0 mod 6, n ≥ 6, and r = 1, 2.

One of the objectives of this paper is to prove tes of some n-uniform cactus chain graphs
(C(Cr

n)) for n ≡ 0 mod 3 as presented in Theorem 2.1.

Theorem 2.1. Let (C(Cr
n)) be n-uniform cactus chain graphs with n ≡ 0 mod 3, n ≥ 6 and

length r ≥ 1. Then,

tes(C(Cr
n)) =

⌈
nr + 2

3

⌉
(2)

Proof. We prove statement (2) by induction on n and r.

1. Statement (2) is proved by induction on n.
According to Lemma 2.1, tes(C(Cr

6)) =
⌈
(6r+2)

3

⌉
. Therefore, statement (2) is true for n = 6.

Based on Lemma 2.1, we also get tes(C(C1
n)) =

⌈
(n+2)

3

⌉
. Hence, the theorem holds for base

case r = 1, n = 6. Assume that Statement (2) is true for some k, i.e.,

tes(C(Cr
k)) =

⌈
kr + 2

3

⌉
. (3)

We will check the the statement for n = k + 3 by considering two cases.
(a) Case 1: for r = 1.

By means of Lemma 2.1, we get tes(C(C1
k+3)) =

⌈
(k+3)+2

3

⌉
. Thus, the statement is

true for r = 1.

(b) Case 2: for r > 1.
Let cycle Ck on the each block is v1e1v2e2v3 . . . vk−1ek−1vkekv1. We can get cycle
Ck+3 on each block by spliting edge ek−1 into three edges with three new vertices
x1, x2, x3 [4]. Based on assumption (3), there is an edge irregular total k′-labeling f
on r-blocks with k′ =

⌈
kr+2
3

⌉
. Define labels for vk−1 and vk on r-blocks as follows:

f(vrk−1) = k′ − 1 =
⌈
kr+2
3

⌉
− 1, f(vrk) = k′ =

⌈
kr+2
3

⌉
with r > 1. We construct

optimal labeling in Ck+3 on r-blocks by using procedures as follows:
i. define labels of vertices f(xr

1) = k′ + r, f(xr
2) = k′ + r, f(xr

3) = k′ + r;

ii. define labels of edges f(vrk−1x
r
1) = k′ + r, f(xr

1x
r
2) = k′ + r, f(xr

2x
r
3) = k′,

f(xr
3v

r
k) = k′.
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By means of total labeling f and the above procedures, we get different weights of
edges on C(Cr

k+3). Furthermore, the maximum label of vertices and edges on C(Cr
k+3)

is k′ + r =
⌈
kr+2
3

⌉
+ 3r

3
=
⌈
(k+3)r+2

3

⌉
. Thus, statement (2) is true for n.

2. Statement (2) is proved by induction on r.
Based on Lemma 2.1, tes (C(C1

n)) =
⌈
(n+2)

3

⌉
. Hence, the theorem is true for r = 1. Assume

that the theorem is true for r, i.e., tes (C(Cr
n)) =

⌈
nr+2
3

⌉
. We need to verify the theorem for

r+1. The cactus chain graph C(Cr+1
n ) consists of (r+1) blocks, i.e., B1, B2, . . . , Br, Br+1.

By using the assumption, there exists an edge irregular total k-labeling f on r blocks with
k =

⌈
nr+2
3

⌉
. We construct procedures to label vertices and edges on block Br+1 through

total labeling f as follows:

(a) labels of vertices u1
r+1, u

2
r+1 . . . , u

bn−2
2 c

r+1 , v1r+1, v
2
r+1, . . . , v

dn−2
2 e

r+1 , ar+2 on block Br+1

are acquired by adding a constant number n
3

to each label f(u1
r), f(u2

r) . . . , f(u
bn−2

2 c
r ),

f(v1r), f(v2r), . . . , f(v
dn−2

2 e
r ), f(ar+1) on block Br;

(b) labels of edges ar+1u
1
r+1, u

1
r+1u

2
r+1, u

2
r+1u

3
r+1, . . . , u

bn−2
2 c

r+1 ar+2, ar+1v
1
r+1, v

1
r+1v

2
r+1,

. . . , v
dn−2

2 e
r+1 ar+2 on block Br+1 are derived by adding a constant number n

3
to each label

of edge aru
1
r, u

1
ru

2
r, u

2
ru

3
r, . . . , u

bn−2
2 c

r ar+1, arv
1
r , v

1
rv

2
r , . . . , v

dn−2
2 e

r ar+1 on block Br .

All weights of edges on block Br+1 are obtained by adding a constant number n to each
weight of edge on block Br. Since we have different weights of edges on block Br under
labeling f , we also obtain different weights of edges on block Br+1. Moreover, labels of
vertices and edges of C(Cr

n) are not more than
⌈
nr+2
3

⌉
. Hence, the largest label on block

Br+1 is
⌈
nr+2
3

⌉
+
⌈
n
3

⌉
=
⌈
n(r+1)+2

3

⌉
which shows the theorem holds for r + 1. Thus,

tes(C(Cr
n)) =

⌈
nr+2
3

⌉
is true for all r and n ≡ 0 mod 3.

In Figure 1, we give an example of edge irregular total 21-labeling of C(C4
15) for which

tes(C(C4
15)) = 21.

2.2. Tadpole Chain Graphs
In this section, we provide formulas for tes of some tadpole chain graphs, i.e. tes of Tr(4, n)

and Tr(5, n). Firstly, we give definition of the tadpole chain graphs.

Definition 2.2. A tadpole graph T (m,n) is graph which consists of a cycle graph of m vertices
connected with a bridge to a path graph of n vertices. Further, a tadpole chain graph of length
r, symbolized by Tr(m,n), is an m-uniform cactus chain graph where cycle Cm on each block is
connected with a bridge to a path graph Pn of n vertices where the length r indicates the number
of tadpole graphs on the chain.
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Figure 1. Edge irregular total 21-labeling of C(C4
15)

Based on Definition 2.2, tadpole chain graph (Tr(4, n)) consists of r blocks B1, B2, . . . , Br

where each block is tadpole graph T (4, n). Also, tadpole chain graph (Tr(5, n)) consists of r
blocks B1, B2, . . . , Br where each block is tadpole graph T (5, n).

Lemma 2.2. Given a tadpole chain graph (Tr(4, n)) of length r with r = 1, 2, 3, n ≡ 2 mod 3,
and n ≥ 5. Then,

tes(Tr(4, n)) =

⌈
(4 + n)r + 2

3

⌉
.

Proof. Tadpole chain graph Tr(4, n) consists 4 + n vertices and 4 + n edges on each block. Let
ui, vi, vi+1, xi be vertices located on cycle C4 of each block Bi where vi+1 is a cut vertex between
Bi and Bi+1. Let y1i , y

2
i , . . . , y

n
i be vertices of the path connected with a bridge to vertex xi. The

edges of Tr(4, n) on block Bi are {ui, vi, uivi+1, vixi, vi+1xi, xiy
1
i }∪{y

j
i y

j+1
i , j = 1, 2, . . . , n−1}.

Based on (1), the lower bound for tes(Tr(4, n)) is as follows:⌈
(4 + n)r + 2

3

⌉
≤ tes(Tr(4, n)) ≤ (4 + n)r.

We will verify an existence of a total edge irregular k-labelingf : V ∪E → {1, 2, . . . , k}where
k is

⌈
(4+n)r+2

3

⌉
to get upper bound tes(Tr(4, n)) ≤

⌈
(4+n)r+2

3

⌉
. Let us consider two cases.

Case 1. For n ≡ 5 mod 6, n ≥ 5, and r = 1, 2, 3.
We construct labels of vertices in the following way:
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f(u1) = 1, f(v1) = 1, f(v2) = 3; f(x1) = 2.
f(v3) = f(v2) + (n+4

3
), n ≥ 5,

f(v4) = f(v3) + (n+4
3

), n ≥ 5.

f(u2) = 3 + (n+1)
2

; f(u3) = 4 + n, n ≥ 5.

f(x2) = 3 + d (n+2)
2
e; f(x3) = 5 + n, n ≥ 5.

f(yj1) =


2, 1 ≤ j ≤ (n+4

3
)− 1, n ≥ 5;

3, j = n+4
3
, n+4

3
+ 1, n ≥ 5;⌈

(4+n)+2
3

⌉
, j = n, n ≥ 5.

f(yj2) =


⌈
(4+n).2+2

3

⌉
, 1 ≤ j ≤ n, n = 5, 11;⌈

(4+n).2+2
3

⌉
−
⌊
(n−8

6
)
⌋
, j = 1, 2, n ≥ 17;⌈

(4+n).2+2
3

⌉
, n−8

3
≤ j ≤ n, n ≥ 17.

f(y
n+4
3

+j

1 ) = 3 + b j
2
c, 2 ≤ j ≤ n− (n+10

3
) + 1, n ≥ 11;

f(y2+j
2 ) =

⌈
(4+n).2+2

3

⌉
−
⌊
(n−8

6
)
⌋

+ b j+1
2
c, 1 ≤ j ≤ (n−11)

3
, n ≥ 23;

f(yj3) =
⌈
(4+n).3+2

3

⌉
, 1 ≤ j ≤ n, n ≥ 5.

Further, we provide labels of edges as follows:

f(u1v1) = 1, f(x1v1) = 1, f(u1v2) = 1, f(x1v2) = 1;

f(u2v2) =
⌈
(4+n).2+2

3

⌉
− 4, f(x2v2) =

⌈
(4+n).2+2

3

⌉
− 4, n = 5;

f(u2v3) =
⌈
(4+n).2+2

3

⌉
− 5, f(x2v3) =

⌈
(4+n).2+2

3

⌉
− 5, n = 5;

f(u2v2) =
⌈
(4+n).2+2

3

⌉
− (n+19

6
), n ≥ 11;

f(x2v2) =
⌈
(4+n).2+2

3

⌉
− (n+19

6
), n ≥ 11;

f(u2v3) =
⌈
(4+n).2+2

3

⌉
− (n+5

2
), n ≥ 11;

f(x2v3) =
⌈
(4+n).2+2

3

⌉
− (n+5

2
), n ≥ 11;

f(u3v3) =
⌈
(4+n).3+2

3

⌉
− (n+7

3
), n ≥ 5;

f(x3v3) =
⌈
(4+n).3+2

3

⌉
− (n+7

3
), n ≥ 5;

f(u3v4) = (n+10
3

); f(x3v4) = (n+10
3

); n ≥ 5.
f(x1y

1
1) = 3, n ≥ 5;

f(yj1y
j+1
1 ) =

⌈
(4+n)+2

3

⌉
, 1 ≤ j ≤ n, n = 5;

f(x2y
1
2) = 2, n = 5;

f(yj2y
j+1
2 ) = j + 2, 1 ≤ j ≤ n− 1, n = 5.

f(yj1y
j+1
1 ) = 3 + j, 1 ≤ j ≤ (n−5

3
), n ≥ 11;

f(yj1y
j+1
1 ) =

⌈
(4+n)+2

3

⌉
, (n−5

3
+ 1) ≤ j ≤ n− 1, n ≥ 11;
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f(x2y
1
2) = 1, n ≥ 11;

f(yj2y
j+1
2 ) = 1, 1 ≤ j ≤ (n−5

3
)− 1, n ≥ 11;

f(yj2y
j+1
2 ) = j + 2− (n−5

3
), n−5

3
≤ j ≤ n− 1.

f(x3y
1
3) = 5, n ≥ 5;

f(yj3y
j+1
3 ) = j + 5, 1 ≤ j ≤ n− 1, n ≥ 5.

Case 2. For n ≡ 2 mod 6, n ≥ 8, and r = 1, 2, 3.

We construct labels of vertices and edges as follows:

f(u1) = 1, f(v1) = 1, f(v2) = 3; f(x1) = 2;n ≥ 8;
f(u2) = 3 + n+2

2
, n ≥ 8;

f(x2) = 3 + n+4
2
, n ≥ 8;

f(u3) = 4 + n; f(x3) = 5 + n, n ≥ 8;
f(v3) = f(v2) + n+4

3
; f(v4) = f(v3) + n+4

3
, n ≥ 8.

f(yj1) =


2, 1 ≤ j ≤ (n+4

3
)− 1, n ≥ 8,

3, n+4
3
≤ j ≤ n+4

3
+ 1, n ≥ 8,⌈

(4+n)+2
3

⌉
, j = n, n ≥ 8

f(yj2) =


⌈
(4+n).2+2

3

⌉
, 1 ≤ j ≤ n, n = 8;⌈

(4+n).2+2
3

⌉
− (n−8

6
), j = 1, n ≥ 14;⌈

(4+n).2+2
3

⌉
, n−8

3
≤ j ≤ n, n ≥ 14.

f(y
n+4
3

+j

1 ) = 3 + b j
2
c, 2 ≤ j ≤ n− (n+10

3
) + 1, n ≥ 8;

f(y1+j
2 ) =

⌈
(4+n).2+2

3

⌉
−
⌊
(n−8

6
)
⌋

+ d j
2
e, 1 ≤ j ≤ (n−8

3
)− 2, n ≥ 20;

f(yj3) =
⌈
(4+n).3+2

3

⌉
, 1 ≤ j ≤ n, n ≥ 8.

f(u1v1) = 1, f(x1v1) = 1, f(u1v2) = 1, f(x1v2) = 1, n ≥ 8;

f(u2v2) =
⌈
(4+n).2+2

3

⌉
− 5, n = 8;

f(x2v2) =
⌈
(4+n).2+2

3

⌉
− 5, n = 8;

f(u2v3) =
⌈
(4+n).2+2

3

⌉
− 7, n = 8;

f(x2v3) =
⌈
(4+n).2+2

3

⌉
− 7, n = 8;

f(u2v2) =
⌈
(4+n).2+2

3

⌉
− (n+22

6
), n ≥ 14;

f(x2v2) =
⌈
(4+n).2+2

3

⌉
− (n+22

6
), n ≥ 14;

f(u2v3) =
⌈
(4+n).2+2

3

⌉
− (n+6

2
), n ≥ 14;

f(x2v3) =
⌈
(4+n).2+2

3

⌉
− (n+6

2
), n ≥ 14;
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f(u3v3) =
⌈
(4+n).3+2

3

⌉
− (n+7

3
), n ≥ 8;

f(x3v3) =
⌈
(4+n).3+2

3

⌉
− (n+7

3
), n ≥ 8;

f(u3v4) = f(x3v4) = (n+10)
3

, n ≥ 8;
f(x1y

1
1) = 3; n ≥ 8;

f(y11y
2
1) = 4; f(yj1y

j+1
1 ) =

⌈
(4+n)+2

3

⌉
, 2 ≤ j ≤ n− 1, n = 8;

f(yj1y
j+1
1 ) = 3 + j, 1 ≤ j ≤ (n−8

3
+ 1), n ≥ 14;

f(yj1y
j+1
1 ) =

⌈
(4+n)+2

3

⌉
, (n−8

3
+ 2) ≤ j ≤ n− 1, n ≥ 14;

f(x2y
1
2) = 1; n ≥ 8;

f(yj2y
j+1
2 ) = j + 1, 1 ≤ j ≤ n− 1, n = 8;

f(yj2y
j+1
2 ) = 1, 1 ≤ j ≤ (n−8

3
), n ≥ 14;

f(yj2y
j+1
2 ) = j + 1− (n−8

3
), n−8

3
+ 1 ≤ j ≤ n− 1, n ≥ 14;

f(x3y
1
1) = 5; f(yj3y

j+1
3 ) = 5 + j; 1 ≤ j ≤ n− 1, n ≥ 8;

In both two cases, we get the edge weights in the following:

wt(u1v1) = 3;wt(x1v1) = 4;wt(u1v2) = 5; n ≥ 5;
wt(x1v2) = 6;wt(x1y

1
1) = 7; n ≥ 5;

wt(yj1y
j+1
1 ) = 7 + j, 1 ≤ j ≤ n− 1;n ≥ 5.

For n = 5:
wt(u2v2) = 2

⌈
(4+n).2+2

3

⌉
− 2;wt(x2v2) = 2

⌈
(4+n).2+2

3

⌉
− 1;

wt(u2v3) = 2
⌈
(4+n).2+2

3

⌉
; wt(x2v3) = 2

⌈
(4+n).2+2

3

⌉
+ 1;

wt(x2y
1
2) = 2

⌈
(4+n).2+2

3

⌉
+ 2;

wt(yj2y
j+1
2 ) = 2

⌈
(4+n).2+2

3

⌉
+ (j + 2), 1 ≤ j ≤ n− 1.

For n = 8:
wt(u2v2) = 2

⌈
(4+n).2+2

3

⌉
− 3;wt(x2v2) = 2

⌈
(4+n).2+2

3

⌉
− 2;

wt(u2v3) = 2
⌈
(4+n).2+2

3

⌉
− 1; wt(x2v3) = 2

⌈
(4+n).2+2

3

⌉
;

wt(x2y
1
2) = 2

⌈
(4+n).2+2

3

⌉
+ 1;

wt(yj2y
j+1
2 ) = 2

⌈
(4+n).2+2

3

⌉
+ (j + 1), 1 ≤ j ≤ n− 1.

For n ≥ 11:
wt(u2v2) = 2

⌈
(4+n).2+2

3

⌉
− (n+1

3
);wt(x2v2) = 2

⌈
(4+n).2+2

3

⌉
− (n+1

3
) + 1;

wt(u2v3) = 2
⌈
(4+n).2+2

3

⌉
− (n+1

3
) + 2;wt(x2v3) = 2

⌈
(4+n).2+2

3

⌉
− (n+1

3
) + 3;

wt(x2y
1
2) = 2

⌈
(4+n).2+2

3

⌉
− (n+1

3
) + 4;

wt(yj2y
j+1
2 ) = 2

⌈
(4+n).2+2

3

⌉
+ j − (n−11

3
), 1 ≤ j ≤ n− 1.
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Further, for n ≥ 5:
wt(u3v3) = wt(u2v2) + (n + 4);wt(x3v3) = wt(x2v2) + (n + 4);
wt(u3v4) = wt(u2v3) + (n + 4);wt(x3v4) = wt(x2v3) + (n + 4);
wt(x3y

1
3) = wt(x2y

1
2) + (n + 4);

wt(yj3y
j+1
3 ) = wt(yj2y

j+1
2 ) + (n + 4), 1 ≤ j ≤ n− 1;

It is easy to check that the largest integer used to label vertices and edges is
⌈
(4+n)r+2

3

⌉
and

each edge has a different weight. Hence, tes(Tr(4, n)) =
⌈
(4+n)r+2

3

⌉
.

Theorem 2.2. Let Tr(4, n) be a tadpole chain graph with n ≡ 2 mod 3, n ≥ 5, and r ≥ 1. Then,

tes(Tr(4, n)) =

⌈
(4 + n)r + 2

3

⌉
. (4)

Proof. We prove the theorem by induction on n and r. Based on Lemma 2.2, tes(T1(4, n)) =⌈
(4+n)+2

3

⌉
. Hence, the theorem is true for r = 1. When n = 5, according to Lemma 2.2 we get

tes(Tr(4, 5)) =
⌈
9r+2
3

⌉ ⌈
= (4+5)r+2

3

⌉
. It means that Statement (4) is true for n = 5.

1. Statement (4) is verified by induction on n.
Assume that the statement is true for n = k, i.e.,

tes(Tr(4, k)) =

⌈
(4 + k)r + 2

3

⌉
. (5)

We will show that the the statement is valid for n = k + 3 through two cases.
(a) Case 1: for r = 1.

By means of Lemma 2.2, we get tes(T1(4, k + 3)) =
⌈
(k+3)+2

3

⌉
. Thus, the statement is

true for r = 1 and n = k + 3.

(b) Case 2: for r > 1.
Let Pk be a path connected with a bridge to cycle C4 on each block with Pk =
v1e1v2e2v3 . . . vk−1ek−1vk. We can get path Pk+3 to form tadpole T (4, k + 3) on each
block by subdividing edge ek−1 into three edges by adding three new vertices x1, x2, x3

[4]. Based on assumption (5), there exists an edge irregular total k′-labeling f on r-
blocks with k′ =

⌈
(4+k)r+2

3

⌉
. We define labels for vk−1 and vk on r-blocks as follows:

f(vrk−1) = k′ − 1 =
⌈
(4+k)r+2

3

⌉
− 1 and f(vrk) = k′ =

⌈
(4+k)r+2

3

⌉
with r > 1. We

construct optimal labeling on Tr(4, k + 3) on r-blocks by procedures as follows:
i. construct labels of vertices f(xr

1) = k′, f(xr
2) = k′ + r, f(xr

3) = k′ + r;

ii. construct labels of edges f(vrk−1x
r
1) = k′ + r, f(xr

1x
r
2) = k′ + r, f(xr

2x
r
3) = k′ +

r, f(xr
3v

r
k) = k′ + r.
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By using total labeling f and the above procedures, we obtain distinct weights of edges
on Tr(4, k + 3). Furthermore, the largest integer for labels of vertices and edges on
Tr(4, k + 3) is k′+ r =

⌈
(4+k)r+2

3

⌉
+ r =

⌈
(4+k+3)r+2

3

⌉
. Thus, Statement (4) is true for

n = k + 3.

2. Statement (4) is proved by induction on r.
Assume that the theorem holds for r, i.e. tes(Tr(4, n)) =

⌈
(4+n)r+2

3

⌉
. We will verify

tes(Tr+1(4, n)). Tadphole chain graph Tr+1(4, n) consists of (r+1) blocks, i.e., B1, B2, . . . , Br,
Br+1. By using the assumption, we have an edge irregular total k-labeling f on r blocks
B1, B2, . . . , Br, with k =

⌈
(4+n)r+2

3

⌉
. We will show the upper bound of tes(Tr+1(4, n)) by

constructing procedures as given in Theorem 2.1 to label vertices and edges on block Br+1:
(a) label for each vertex on block Br+1 is obtained by adding an integer 4+n

3
to label of

coresponding vertex on block Br;
(b) label for each edge on block Br+1 is also obtained by adding an integer 4+n

3
to label of

coresponding edge on block Br.
By means of the procedures, the weight of each edge on block Br+1 is obtained by adding a
number 4 +n to the weight of coresponding edge on block Br. Since we have different edge
weights of on block Br under labeling f , we also obtain different weights of edges on block
Br+1. Since the largest integer for labels of vertices and edges of Tr(4, n) is

⌈
(4+n)r+2

3

⌉
, as a

consequence we get the largest integer for the labels on block Br+1 is
⌈
(4+n)r+2

3

⌉
+
⌈
4+n
3

⌉
=⌈

(4+n)(r+1)+2
3

⌉
which shows the theorem holds for r + 1. Thus, tes (Tr(4, n)) =

⌈
(4+n)r+2

3

⌉
holds for any natural number r and n ≡ 0 mod 3.

In Figure 2, we give an illustration of an edge irregular total 17-labeling of T4(4, 8) such that
tes(T4(4, 8)) = 17.

Further, the results of tes of (Tr(5, n)) are presented in Lemma 2.3, Lemma 2.4, Lemma 2.5,
and Theorem 2.3.
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Figure 2. Edge irregular total 17-labeling of T4(4, 8)

Lemma 2.3. Let (Tr(5, 1)) be a tadpole chain graph of length r with r ≥ 1. Then,

tes(Tr(5, 1)) =

⌈
6r + 2

3

⌉
.

Proof. Tadpole chain graph Tr(5, 1) consists of r blocks B1, B2, . . . , Br with 6 edges on each
block. Let u1

i , u
2
i , vi, vi+1, xi be vertices of cycle C5 on each block Bi where vi+1 is a cut vertex

between two blocks Bi and Bi+1. Let y1i be vertices of path graph P1 connected with a bridge to
vertices xi. The lower bound for tesTr(5, 1) is as follows:⌈

6r + 2

3

⌉
≤ tes(Tr(5, 1)) ≤ 6r.

Further, we investigate upper bound tes(Tr(5, 1)) ≤
⌈
6r+2
3

⌉
by constructing a total k-labeling

f : V ∪ E → {1, 2, . . . , k} and show that the vertex and labels are at most k =
⌈
6r+2
3

⌉
and each

edge has a diverse weight under labeling f . Let us consider two cases.

Case 1. For r = 1, 2.
Labels of vertices are constructed in the following way:
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f(u1
1) = f(u2

1) = 1; f(u1
2) = f(u2

2) =
⌈
12+2
3

⌉
− 1 = 4;

f(v1) = f(v2) = 1; f(v3) = 2.3− 4 = 2;
f(x1) = 2; f(x2) =

⌈
12+2
3

⌉
= 5; f(y1i ) =

⌈
6i+2
3

⌉
; i = 1, 2;

Whereas, labels of edges are constructed as follows:

f(u1
1u

2
1) = 5; f(u1

1v1) = 1; f(u2
1v2) = 3;

f(u1
2u

2
2) =

⌈
12+2
3

⌉
= 5; f(u1

2v2) =
⌈
12+2
3

⌉
− 1 = 4; f(u2

2v3) =
⌈
12+2
3

⌉
= 5;

f(x1v1) = 1; f(x1v2) = 3; f(y11x1) =
⌈
6+2
3

⌉
= 3;

f(x2v2) =
⌈
12+2
3

⌉
− 1 = 4; f(x2v3) =

⌈
12+2
3

⌉
= 5; f(y12x2) =

⌈
12+2
3

⌉
− 1 = 4.

We get the weights of edges under labeling f as follows:

wt(u1
1u

2
1) = 7;wt(u1

1v1) = 3;wt(u2
1v2) = 5;

wt(u1
2u

2
2) = 3

⌈
12+2
3

⌉
− 2 = 13;wt(u1

2v2) = 2
⌈
12+2
3

⌉
− 1 = 9;wt(u2

2v3) = 2
⌈
12+2
3

⌉
+ 1 = 11;

wt(x1v1) = 4;wt(x1v2) = 6;wt(y11x1) = 2
⌈
6+2
3

⌉
+ 2 = 8;

wt(x2v2) = 2
⌈
12+2
3

⌉
= 10;wt(x2v3) = 2

⌈
12+2
3

⌉
+ 2 = 12;wt(y12x2) = 3

⌈
12+2
3

⌉
− 1 = 14.

It is easy to see that f is an edge irregular total k-labeling that satisfies the required properties,
i.e. the largest label of vertices and edges is

⌈
6r+2
3

⌉
and each edge has a different weight. Thus,

tes(Tr(5, 1)) =
⌈
6r+2
3

⌉
.

Case 2. For r ≥ 3.
We construct vertex and edge labels as described below:

f(u1
r) = f(u2

r) = 2r; f(vr) = 2r − 4; f(vr+1) = 2r − 2; f(xr) =
⌈
6r+2
3

⌉
; f(y1r) =

⌈
6r+2
3

⌉
.

f(u1
ru

2
r) =

⌈
6r+2
3

⌉
; f(u1

rvr) = f(u2
rvr+1) =

⌈
6r+2
3

⌉
;

f(xrvr) = f(xrvr+1) =
⌈
6r+2
3

⌉
; f(y1rxr) =

⌈
6r+2
3

⌉
− 1.

Under labeling f , we obtain the weights of edges as follows:

wt(u1
ru

2
r) = 4r +

⌈
6r+2
3

⌉
;wt(u1

rvr) = 4r +
⌈
6r+2
3

⌉
− 4;wt(u2

rvr+1) = 4r +
⌈
6r+2
3

⌉
− 2;

wt(xrvr) = 2r + 2
⌈
6r+2
3

⌉
− 4;wt(xrvr+1) = 2r + 2

⌈
6r+2
3

⌉
− 2;wt(y1rxr) = 3

⌈
6r+2
3

⌉
− 1.

It is shown that the largest integer of vertex and edge labels is
⌈
6r+2
3

⌉
and the edge weights

are all different. It completes the proof of upper bound of tes(Tr(5, 1)). Thus, tes(Tr(5, 1)) =⌈
6r+2
3

⌉
.

Lemma 2.4. Given a tadpole chain graph (Tr(5, 4)) of length r with r ≥ 1. Then, tes(Tr(5, 4)) =⌈
9r+2
3

⌉
for r ≥ 1.

Proof. Let u1
i , u

2
i , vi, vi+1, xi be vertices of cycle C5 on each block Bi where vi+1 is a cut vertex of

two blocks Bi and Bi+1. Let y1i , y
2
i , y

3
i , y

4
i be vertices of the path graph P4 connected with a bridge

to vertices xi. The lower bound of tes(Tr(5, 4)) is as follows:⌈
9r + 2

3

⌉
≤ tes(Tr(5, 4)) ≤ 9r.
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To verify the upper bound of tes(Tr(5, 4)), we construct a total k-labelingf : V ∪ E →
{1, 2, . . . , k} with k =

⌈
9r+2
3

⌉
and show that the largest integer of vertex and edge labels is k

and all edges has a distinct weights. Let us consider two cases.

Case 1. For r = 1, 2.
Vertex and edge labels are described below:

f(u1
1) = f(u2

1) = 1; f(u1
2) = f(u2

2) =
⌈
9.2+2

3

⌉
− 1 = 6;

f(v1) = f(v2) = 1; f(v3) = 2;
f(x1) = 1; f(x2) =

⌈
9.2+2

3

⌉
= 7;

f(y2i−11 ) = i + 2; f(y2i2 ) = i + 1, i = 1, 2.

f(u1
1u

2
1) = 5; f(u1

1v1) = 1; f(u2
1v2) = 3; f(x1v1) = 2; f(x1v2) = 4;

f(y11x1) = f(y11y
2
1) = f(y21y

3
1) = f(y31y

4
1) =

⌈
9+2
3

⌉
= 4;

f(u1
2u

2
2) =

⌈
9.2+2

3

⌉
− 3 = 4;

f(u1
2v2) =

⌈
9.2+2

3

⌉
− 2 = 5; f(u2

2v3) =
⌈
9.2+2

3

⌉
− 1 = 6;

f(x2v2) =
⌈
9.2+2

3

⌉
− 2 = 5; f(x2v3) =

⌈
9.2+2

3

⌉
− 1 = 6;

f(y12x2) =
⌈
9.2+2

3

⌉
− 4 = 3;

f(yj2y
j+1
2 ) =

⌈
9.2+2

3

⌉
− 4 + j; j = 1, 2, 3.

We get the weights of edges in the following:

wt(u1
1u

2
1) = 7;wt(u1

2u
2
2) = 3

⌈
9.2+2

3

⌉
− 5 = 16;

wt(u1
i vi) = 9i− 6;wt(u1

i vi+1) = 9i− 4, i = 1, 2;
wt(xivi) = 9i− 5;wt(xivi+1) = 9i− 3, i = 1, 2;

wt(y1i xi) = 9i− 1;wt(yji y
j+1
i ) = 9i + (j − 1), i = 1, 2, 3.

So the edge weights of Tr(5, 4) under labeling f are different and the largest label used is k =⌈
9r+2
3

⌉
. It shows that the upper bound of tes(Tr(5, 4)) is

⌈
9r+2
3

⌉
. Hence, tes (Tr(5, 4)) =

⌈
9r+2
3

⌉
.

Case 2. For r ≥ 3.
Labels of vertices and edges are provided in the following way:

f(u1
r) = f(u2

r) = 3r; f(vr) = 3r − 7; f(vr+1) = 3r − 4;
f(xr) =

⌈
9r+2
3

⌉
; f(yir) =

⌈
9r+2
3

⌉
, i = 1, 2, 3, 4.

f(u1
ru

2
r) =

⌈
9r+2
3

⌉
− 3; f(u1

rvr) =
⌈
9r+2
3

⌉
; f(u2

rvr+1) =
⌈
9r+2
3

⌉
− 1;

f(xrvr) =
⌈
9r+2
3

⌉
; f(xrvr+1) =

⌈
9r+2
3

⌉
− 1; f(y1rxr) =

⌈
9r+2
3

⌉
− 4;

f(yjry
j+1
r ) =

⌈
9r+2
3

⌉
− 4 + j, j = 1, 2, 3.

We observe that
wt(u1

ru
2
r) = 6r +

⌈
9r+2
3

⌉
− 3;wt(u1

rvr) = 6r +
⌈
9r+2
3

⌉
− 7;

wt(u2
rvr+1) = 6r +

⌈
9r+2
3

⌉
− 5;wt(xrvr) = 3r + 2

⌈
9r+2
3

⌉
− 7;

wt(xrvr+1) = 3r + 2
⌈
9r+2
3

⌉
− 5;wt(y1rxr) = 3

⌈
9r+2
3

⌉
− 4;

wt(yjry
j+1
r ) = 3

⌈
9r+2
3

⌉
− 4 + j, j = 1, 2, 3.
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It is shown that the largest integer of labels of vertices and edges is
⌈
9r+2
3

⌉
and the edge weights

are all distinct. It completes the proof that tes(Tr(5, 4)) =
⌈
9r+2
3

⌉
.

Lemma 2.5. Let (Tr(5, n)) be a tadpole chain graph of length r which each block is a tadpole
graph T (5, n) with n ≡ 1 mod 3 and r = 1, 2, 3. Then,

tes(Tr(5, n)) =

⌈
(5 + n)r + 2

3

⌉
.

Proof. Let u1
i , u

2
i , vi, vi+1, xi be vertices of cycle C5 on block Bi where vi+1 is a cut vertex of two

blocks Bi and Bi+1. Let y1i , y
2
i , y

3
i , . . . , y

n
i (i = 1, 2, . . . , r) be vertices of path graph Pn connected

with a bridge to vertices xi. The lower bound for tes(Tr(5, n)) is:⌈
(5 + n)r + 2

3

⌉
≤ tes(Tr(5, n)) ≤ (5 + n)r.

To show that k =
⌈
(5+n)r+2

3

⌉
is an upper bound for tes(Tr(5, n)), we construct a total k-

labeling f : V ∪ E → {1, 2, . . . , k} by considering two cases.

Case 1. For n ≡ 1 mod 6, n ≥ 7, and r = 1, 2.
Labels of vertices are as follows:

f(u1
1) = f(u2

1) = 1;

f(u1
2) = f(u2

2) =
⌈
(5+n)2+2

3

⌉
− 1 (for n = 7);

f(u1
2) = f(u2

2) =
⌈
(5+n)2+2

3

⌉
− (2 + n−13

6
) (for n ≥ 13);

f(v1) = f(v2) = 1; f(v3) = 2;

f(x1) = 2; f(x2) =
⌈
(5+n)2+2

3

⌉
(for n = 7);

f(x2) =
⌈
(5+n)2+2

3

⌉
− (1 + n−13

6
) (for n ≥ 13);

f(y11) = f(y21) = 2; f(y31) = f(y41) = 3 (for n = 7);

f(y11) = f(y21) = . . . = f
(
y

5+n
3
−4

1

)
= 1 (for n ≥ 13);

f
(
y

5+n
3
−3

1

)
= f

(
y

5+n
3
−2

1

)
= 2; f

(
y

5+n
3
−1

1

)
= f

(
y

5+n
3

1

)
= 3 (for n ≥ 13);

f
(
y

5+n
3

+i

1

)
= 3 +

⌊
i+1
2

⌋
(for 1 ≤ i ≤ 2n−11

3
+ 1, n ≥ 7);

f(yn1 ) =
⌈
(5+n)+2

3

⌉
.

f(yi2) =
⌈
(5+n)2+2

3

⌉
for i = 1, 2, . . . , n, and n = 7, 13;

For n ≥ 19 :

f(y12) = f(y22) =
⌈
(5+n)2+2

3

⌉
− (n−13

6
);

f(y32) = f(y42) =
⌈
(5+n)2+2

3

⌉
− (n−13

6
) + 1;

f
(
y

5+n
3
−5

2

)
= f

(
y

5+n
3
−4

2

)
= . . . = f(yn2 ) =

⌈
(5+n)2+2

3

⌉
.
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Moreover, labels of edges are described below:

f(u1
1u

2
1) = 5; f(u1

1v1) = 1; f(u2
1v2) = 3; f(x1v1) = 2; f(x1v2) = 4; f(u1

2u
2
2) = 3;

f(u1
2v2) =

⌈
(5+n)2+2

3

⌉
− 3; f(x2v2) =

⌈
(5+n)2+2

3

⌉
− 3; n = 7;

f(u2
2v3) =

⌈
(5+n)2+2

3

⌉
− 2; f(x2v3) =

⌈
(5+n)2+2

3

⌉
− 2; n = 7

f(y11x1) =
⌈
(5+n)+2

3

⌉
; f(yi1y

i+1
1 ) =

⌈
(5+n)+2

3

⌉
, i = 1, 2, . . . , 6; n = 7

f(y12x2) = 2; f(yi2y
i+1
2 ) = i + 2, i = 1, 2, . . . , 6; n = 7.

f(u1
2v2) = f(x2v2) =

⌈
(5+n)2+2

3

⌉
− 4− (n−13)

6
; n ≥ 13;

f(u2
2v3) = f(x2v3) =

⌈
(5+n)2+2

3

⌉
− 3− (n−13)

6
; n ≥ 13

f(y11x1) = 6, n ≥ 13

f(yi1y
i+1
1 ) =

⌈
(5+n)+2

3

⌉
, i = 1, 2, . . . , n− 1, n = 13;

f(yi1y
i+1
1 ) =

⌈
(5+n)+2

3

⌉
−
(
n−13

3

)
+ (i− 1), 1 ≤ i ≤ (5+n

3
)− 6, n ≥ 19;

f(yi1y
i+1
1 ) =

⌈
(5+n)+2

3

⌉
, 5+n

3
− 5 ≤ i ≤ n− 1, n ≥ 19;

f(y12x2) = 1; f(yi2y
i+1
2 ) = 1, 1 ≤ i ≤ 5+n

3
− 5, n ≥ 13

f(yj2y
j+1
2 ) = j − (n−13

3
), 5+n

3
− 4 ≤ j ≤ n− 1, n ≥ 13.

We get the weights of edges as follows:

wt(u1
1u

2
1) = 7;wt(u1

1v1) = 3;wt(x1v1) = 4;wt(u2
1v2) = 5;wt(x2v2) = 6, (n ≥ 7).

For n = 7 :

wt(u1
2u

2
2) = 2

⌈
(5+n)2+2

3

⌉
+ 1;wt(u1

2v2) = 2
⌈
(5+n)2+2

3

⌉
− 3;wt(u2

2v3) = 2
⌈
(5+n)2+2

3

⌉
− 1;

wt(x2v2) = 2
⌈
(5+n)2+2

3

⌉
− 2;wt(x2v3) = 2

⌈
(5+n)2+2

3

⌉
;

wt(y11x1) = 8;wt(yi1y
i+1
1 ) = 2

⌈
(5+n)+2

3

⌉
+ (i− 2), i = 1, 2, . . . n− 1;

wt(yi2y
i+1
2 ) = 2

⌈
(5+n)2+2

3

⌉
+ (i + 2), i = 1, 2, . . . n− 1;

For n ≥ 13 :

wt(u1
2u

2
2) = 2

⌈
(5+n)2+2

3

⌉
− (5+n

3
− 5);wt(u1

2v2) = 2
⌈
(5+n)2+2

3

⌉
− (5+n

3
− 1);

wt(u2
2v3) = 2

⌈
(5+n)2+2

3

⌉
− (5+n

3
− 3);

wt(x2v2) = 2
⌈
(5+n)2+2

3

⌉
− (5+n

3
− 2);wt(x2v3) = 2

⌈
(5+n)2+2

3

⌉
− (5+n

3
− 4);
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wt(y11x1) = 8;

wt(yi1y
i+1
1 ) =

⌈
(5+n)+2

3

⌉
+ (i + 1), 1 ≤ i ≤ n− 1, n = 13;

wt(yi1y
i+1
1 ) =

⌈
(5+n)+2

3

⌉
+ i− (n−13

3
) + 1, 1 ≤ i ≤ n− 1, n ≥ 19;

wt(y12x2) = 2
⌈
(5+n)2+2

3

⌉
− (n−13

3
);

wt(yi2y
i+1
2 ) = 2

⌈
(5+n)2+2

3

⌉
+
(
i− n−13

3

)
, 1 ≤ i ≤ n− 1.

We show that labels of vertices and edges are at most
⌈
(5+n)r+2

3

⌉
and the edge weights are

distinct. This proves the upper bound of tes(Tr(5, n)). Thus, tes(Tr(5, n)) =
⌈
(5+n)r+2

3

⌉
.

Case 2. For n ≡ 4 mod 6, n ≥ 10, and r = 1, 2.
Labels of vertices are described in the following:

f(u1
1) = f(u2

1) = 1;

f(u1
2) = f(u2

2) =
⌈
(5+n)2+2

3

⌉
− (1− n−10

6
);n ≥ 10;

f(v1) = f(v2) = 1; f(v3) = 2;

f(x1) = 1; f(x2) =
⌈
(5+n)2+2

3

⌉
− (n−10

6
);n ≥ 10;

f(y11) = f(y21) = . . . = f

(
y

5+n
3
−4

1

)
= 1;n ≥ 10;

f

(
y

5+n
3
−3

1

)
= f

(
y

5+n
3
−2

1

)
= 2; f

(
y

5+n
3
−1

1

)
= f

(
y

5+n
3

1

)
= 3;n ≥ 10;

f

(
y

5+n
3

+i

1

)
= 3 +

⌊
i+1
2

⌋
(for 1 ≤ i ≤ 2n−11

3
+ 1);n ≥ 10;

f(yn1 ) = k1;n ≥ 10;
f(y12) = k2 − (n−10

6
);n ≥ 10;

f(yi2) =
⌈
(5+n)2+2

3

⌉
, 2 ≤ i ≤ n, n = 10;

f(yi2) =
⌈
(5+n)2+2

3

⌉
− (n−10

6
) +

⌊
i
2

⌋
, 2 ≤ i ≤ 5+n

3
− 6, for n ≥ 22;

f(yj2) = f(yj+1
2 ) =

⌈
(5+n)2+2

3

⌉
, 5+n

3
− 5 ≤ j ≤ n, for n ≥ 16.

Furthermore, we provide labels of edges as follows:

f(u1
1u

2
1) = 5; f(u1

1v1) = 1; f(u2
1v2) = 3; f(x1v1) = 2; f(x1v2) = 4; f(u1

2u
2
2) = 2;

f(u1
2v2) = f(x2v2) =

⌈
(5+n)2+2

3

⌉
− 4− (n−10)

6
;n ≥ 10;

f(u2
2v3) = f(x2v3) =

⌈
(5+n)2+2

3

⌉
− 3− (n−10)

6
;n ≥ 10;

f(y11x1) = 6;

f(yi1y
i+1
1 ) =

⌈
(5+n)+2

3

⌉
, 1 ≤ i ≤ n− 1, n = 10;

f(yi1y
i+1
1 ) =

⌈
(5+n)+2

3

⌉
−
(
n−10

3

)
+ i, 1 ≤ i ≤ 5+n

3
− 6, n ≥ 16;

f(yi1y
i+1
1 ) =

⌈
(5+n)+2

3

⌉
, 5+n

3
− 5 ≤ i ≤ n− 1, n ≥ 16;
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f(y12x2) = 1;

f(yj2y
j+1
2 ) = j + 1, for 1 ≤ j ≤ n− 1, n = 10;

f(yi2y
i+1
2 ) = 1, 1 ≤ i ≤ 5+n

3
− 5, n ≥ 16;

f(yj2y
j+1
2 ) = j −

(
n−10

3

)
+ 1, 5+n

3
− 4 ≤ j ≤ n− 1, n ≥ 16.

We derive:

wt(u1
1u

2
1) = 7;wt(u1

1v1) = 3;wt(x1v1) = 4;wt(u2
1v2) = 5;wt(x1v2) = 6.

wt(u1
2u

2
2) = 2

⌈
(5+n)2+2

3

⌉
−
(
n−10

3

)
;wt(u1

2v2) = 2
⌈
(5+n)2+2

3

⌉
−
(
n−10

3

)
− 4;n ≥ 10;

wt(u2
2v3) = 2

⌈
(5+n)2+2

3

⌉
−
(
n−10

3

)
− 2;n ≥ 10;

wt(x2v2) = 2
⌈
(5+n)2+2

3

⌉
−
(
n−10

3

)
− 3;wt(x2v3) = 2

⌈
(5+n)2+2

3

⌉
−
(
n−10

3

)
− 1;n ≥ 10.

wt(y11x1) = 8;
wt(yi1y

i+1
1 ) = 8 + i, for 1 ≤ i ≤ n− 1, n ≥ 10;

wt(y12x2) = 2
⌈
(5+n)2+2

3

⌉
−
(
n−10

3

)
+ 1;n ≥ 10;

wt(yi2y
i+1
2 ) = 2

⌈
(5+n)2+2

3

⌉
+ (i + 1), for 1 ≤ i ≤ n− 1, n = 10;

wt(yi2y
i+1
2 ) = 2

⌈
(5+n)2+2

3

⌉
+
(
i− n−10

3
+ 1
)
, for 1 ≤ i ≤ n− 1, n ≥ 16.

It is clear that all labels of vertices and edges are at most
⌈
(5+n)r+2

3

⌉
and each edge has a dif-

ferent weight. Thus, tes(Tr(5, n)) =
⌈
(5+n)r+2

3

⌉
.

Case 3. For r = 3, n ≡ 1 mod 3, and n ≥ 7.
We provide Labels of vertices and edges as follows:

f(u1
3) = f(u2

3) =
⌈
(5+n)3+2

3

⌉
− 1; f(v3) = 2; f(v4) = 2 +

⌈
(5+n)

3

⌉
;n ≥ 7;

f(x3) =
⌈
(5+n)3+2

3

⌉
; f(yi3) =

⌈
(5+n)3+2

3

⌉
, for i = 1, 2, . . . , n;n ≥ 7;

f(u1
3u

2
3) = 7; f(u1

3v3) =
⌈
(5+n)3+2

3

⌉
; f(u2

3v4) =
⌈
(5+n)3+2

3

⌉
− ( (5+n)

3
) + 2;n ≥ 7;

f(x3v4) =
⌈
(5+n)3+2

3

⌉
− ( (5+n)

3
) + 2; f(x3v3) =

⌈
(5+n)3+2

3

⌉
;n ≥ 7;

f(x3y
1
3) = 6; f(yi3y

i+1
3 ) = i + 6, i = 1, 2, . . . , n− 1;n ≥ 7.

We derive all edges have different weights:

wt(u1
3u

2
3) = 2

⌈
(5+n)3+2

3

⌉
+ 5;wt(u1

3v3) = 2
⌈
(5+n)3+2

3

⌉
+ 1;wt(u2

3v4) = 2
⌈
(5+n)3+2

3

⌉
+ 3;n ≥ 7;

wt(x3v3) = 2
⌈
(5+n)3+2

3

⌉
+ 2;wt(x3v4) = 2

⌈
(5+n)3+2

3

⌉
+ 4;wt(y13x3) = 2

⌈
(5+n)3+2

3

⌉
+ 6;n ≥ 7;

wt(yi3y
i+1
3 ) = 2

⌈
(5+n)3+2

3

⌉
+ i + 6, i = 1, 2, . . . , n− 1;n ≥ 7.

Therefore, the largest integer for labels of vertices and edges is
⌈
(5+n)3+2

3

⌉
and the edge weights

are diverse. Thus, tes (T3(5, n)) =
⌈
(5+n)3+2

3

⌉
.
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Theorem 2.3. Let (Tr(5, n)) be a tadpole chain graph of length r which each block is a tadpole
graph T (5, n) with n ≡ 1 mod 3 and r ≥ 1. Then,

tes(Tr(5, n)) =

⌈
(5 + n)r + 2

3

⌉
. (6)

Proof. The theorem is proved by induction on n and r. Based on Lemma 2.3, Lemma 2.4, and
Lemma 2.5, tes(T1(5, n)) =

⌈
(5+n)+2

3

⌉
for n ≡ 1 mod 3. Hence, the theorem holds for r = 1.

For n = 1, according to Lemma 2.3 we have tes(Tr(5, 1)) =
⌈
6r+2
3

⌉
=
⌈
(5+1)r+2

3

⌉
. Therefore,

Statement (6) holds for n = 1.

1. Statement (6) is proved by induction on n.
Assume that the statement is true for n = k, i.e.,

tes(Tr(5, k)) =

⌈
(5 + k)r + 2

3

⌉
. (7)

We will verify that the statement is true for n = k + 3 by considering two cases.
(a) Case 1: When r = 1.

Based on Lemma 2.5, we have tes(T1(5, k + 3)) =
⌈
(5+k+3)+2

3

⌉
. Thus, the statement

holds for r = 1 and n = k + 3.

(b) Case 2: When r > 1.
The proof is analog to the proof of Case 2 in Part (1) of Theorem 2.2. By using the
same procedures, Statement (6) is true for n = k + 3.

2. Statement (6) is proved by induction on r.

Based on Lemma 2.3, Lemma 2.4, and Lemma 2.5, tes(T1(5, n)) =
⌈
(5+n)3+2

3

⌉
. Hence, the

theorem is true for r = 1 and n ≡ 0 mod 3. Assume that the theorem holds for r, i.e.
tes(Tr(5, n)) =

⌈
(5+n)r+2

3

⌉
. We will show that tes(Tr+1(5, n)) =

⌈
(5+n)(r+1)+2

3

⌉
.

Tadpole chain graph Tr+1(5, n) consists of (r + 1) blocks, i.e., B1, B2, . . . , Br, Br+1 where
each block is a tadpole graph T (5, n). Based on the assumption, there exists an edge irregular
total k-labeling f on r blocks B1, B2, . . . , Br, with k =

⌈
(5+n)r+2

3

⌉
. We construct procedures

to get labels of vertices and edges on block Br+1 as follows:
(a) Labels of vertices on block Br+1 are obtained by adding a number (5+n)

3
to label of

vertices on block Br under labeling f .
(b) Labels of edges on block Br+1 are also obtained by adding a number (5+n)

3
to label of

edges on block Br under labeling f .
By using the above procedures, we get the edge weights on block Br+1 as follows:

wt(u1
r+1u

2
r+1) = wt(u1

ru
2
r) + (5 + n);wt(u1

r+1vr+1) = wt(u1
rvr) + (5 + n);

wt(u2
r+1vr+2) = wt(u2

rvr+1) + (5 + n);wt(xr+1vr+1) = wt(xrvr) + (5 + n);
wt(xr+1vr+2) = wt(xrvr+1) + (5 + n);wt(y1r+1xr+1) = wt(y1rxr) + (5 + n);
wt(yir+1y

i+1
r+1) = wt(yiry

i+1
r ) + (5 + n), for i = 1, 2, . . . , n− 1.
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Since the edge weights of Tr(5, n) are distinct under labeling f , we also obtain the edge
weights on block Br+1 are all distinct. Moreover,the largest integer of labels of vertices and
edges of Tr(5, n) is

⌈
(5+n)r+2

3

⌉
. As a consequence, the largest integer of labels of vertices and

edges on block Br+1 is
⌈
(5+n)r+2

3

⌉
+
⌈
(5+n)

3

⌉
=
⌈
(5+n)(r+1)+2

3

⌉
. Hence, tes(Tr+1(5, n)) =⌈

(5+n)(r+1)+2
3

⌉
. Thus, the theorem is true for any r and n ≡ 0 mod 3. The proof is com-

plete.

3. Conclusions

In this paper, we have found tes of some n-uniform cactus chain graphs C(Cr
n) and tadpole

chain graphs Tr(4, n), Tr(5, n) of length r with n = 0 mod 3. As further research, we will
determine tes of n-uniform cactus chain graphs C(Cr

n) for n ≡ 1 mod 3 and n ≡ 2 mod 3.
Also, we will investigate tvs of n-uniform cactus chain graphs and related chain graphs which are
still in progress.
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[5] M. Bača, S. Jendroľ, K. Kathiresan, K. Muthugurupackiam, and A. Semanicová-Fenovcikova,
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