INDONESIAN JOURNAL

OF COMBINATORICS

On super (a, d)-edge antimagic total labeling of branched-prism graph

Khairannisa Al Azizu, Lyra Yulianti ${ }^{1}$, Narwen, Syafrizal Sy
Department of Mathematics,
Faculty of Mathematics and Science, Andalas University,
Kampus UNAND Limau Manis Padang, Indonesia
khairannisa10@gmail.com, lyra@sci.unand.ac.id, narwen@sci.unand.ac.id, syafrizalsy@sci.unand.ac.id

Abstract

Let H be a branched-prism graph, denoted by $H=\left(C_{m} \times P_{2}\right) \odot \bar{K}_{n}$ for odd $m, m \geq 3$ and $n \geq 1$. This paper considers about the existence of the super (a, d)-edge antimagic total labeling of H for some positive integer a and some non-negative integer d.

Keywords: Super (a, d)-edge antimagic total labeling, branched-prism graph Mathematics Subject Classification: 05C12, 05C15
DOI: 10.19184/ijc.2021.5.1.2

1. Introduction

In [5], Hartsfield and Ringel gave the concept of antimagic labeling of a graph. Let G be an arbitrary graph G on p vertices and q edges. Graph G is called antimagic if its edges are labeled with $1,2, \cdots, q$ such that all the vertex weights are pairwise distinct. Next, for some integers $a>0$ and $d \geq 0$, Bodendick and Walther [3] introduced the concept of (a, d)-antimagic labeling as an edge labeling such that the vertex weights form an arithmetic progression starting from a and having a common difference d. Moreover, Simanjuntak et al. [6] defined an (a,d)-edge antimagic vertex labeling of G as a mapping $f: V(G) \rightarrow\{1,2, \cdots, p\}$ such that the set of edge weights $W_{1}=\{f(u)+f(v) \mid u v \in E(G)\}$ can be written as $\{a, a+d, a+2 d, \cdots, a+(q-1) d\}$, for some non-negative integers a and d. A mapping $g: V(G) \cup E(G) \rightarrow\{1,2, \cdots, p+q\}$ such that

[^0]the set of edge weights $W_{2}=\{g(u)+g(v)+g(u v) \mid u v \in E(G)\}$ form an arithmetic progression $\{a, a+d, a+2 d, \cdots, a+(q-1) d\}$, for $a>0$ and $d \geq 0$, is called an (a, d)-edge antimagic total labeling of G. If $d=0$ then the ($a, 0$)-antimagic labeling becomes the magic labeling with magic constant a. Some previous results on magic and antimagic labeling are listed in a book by Baca and Miller [2] and also in an updated survey by Gallian [4].

Sugeng et al. [7] determined the super (a, d)-edge antimagic total labeling (super (a, d) EAMTL) of a generalized prism graph $C_{m} \times P_{r}$ for $m \geq 3$ and $r \geq 2$. In [1], Azizu et al. defined the branched-prism graph, denoted by $H=\left(C_{m} \times P_{2}\right) \odot \bar{K}_{n}$, for $m \geq 3$ and $n \geq 1$, where \bar{K}_{n} denotes the complement of a complete graph on n vertices. They also determined the existence of a super edge magic labeling (super EMTL) of the branched-prism graph. In this paper, it will be shown that H admits a super (a, d)-edge antimagic total labeling for odd $m, m \geq 3$ and $n \geq 1$.

2. The Branched-Prism Graph and Its Super (a, d)-Edge Antimagic Labeling

Azizu et al. [1] gave the definition of branched-prism graph as follows. The graph is constructed from the corona operation between prism graph $C_{m} \times P_{2}$ and the complement of a complete graph \bar{K}_{n} on n vertices, denoted by $H=\left(C_{m} \times P_{2}\right) \odot \bar{K}_{n}$, for $m \geq 3$ and $n \geq 1$. The vertex set and edge set of H are defined as follows.

$$
\begin{aligned}
V(H)= & \left\{v_{i, j}, v_{i, j, k} \mid 1 \leq i \leq 2,1 \leq j \leq m, 1 \leq j \leq n\right\} \\
E(H)= & \left\{v_{i, j} v_{i, j+1} \mid 1 \leq i \leq 2,1 \leq j \leq m-1\right\} \cup\left\{v_{i, m} v_{i, 1} \mid 1 \leq i \leq 2\right\}, \\
& \cup\left\{v_{1, j} v_{2, j} \mid 1 \leq j \leq m-1\right\} \cup\left\{v_{1, m} v_{2, m}\right\} \\
& \cup\left\{v_{i, j} v_{i, j, k}, v_{i, m} v_{i, m, k} \mid 1 \leq i \leq 2,1 \leq j \leq m-1,1 \leq k \leq n\right\} .
\end{aligned}
$$

It is clear that H has $p=2 m n+2 m$ vertices and $q=2 m n+3 m$ edges. Graph H is given in Figure 1.

The following theorem gives the upperbound of the difference d in the super (a, d)-EAMTL of H.
Theorem 2.1. Let $H=\left(C_{m} \times P_{2}\right) \odot \overline{K_{n}}$ be the branched-prism graph on $2 m n+2 m$ vertices and $2 m n+3 m$ edges. If H admits the super (a, d)-edge antimagic total labeling then $d \leq 2$.

Proof. Suppose that H has a super (a, d)-EAMTL, defined by $f: V(H) \cup E(H) \rightarrow\{1,2, \cdots, 4 m n+$ $5 m\}$. The set of edge weight can be written as $\{a, a+d, \cdots, a+(q-1) d\}$, where $q=2 m n+3 m$. The minimum possible edge-weight of this labeling is $1+2+(2 m n+2 m+1)=2 m n+2 m+4$, and the maximum possible edge-weight is $(2 m n+2 m-1)+(2 m n+2 m)+((2 m n+2 m)+$ $(2 m n+3 m))=3(2 m n+2 m)+(2 m n+3 m)-1=8 m n+9 m-1$. Therefore,

$$
\begin{align*}
a & \geq 2 m n+2 m+4 \tag{1}\\
a+(q-1) d=a+(2 m n+3 m-1) d & \leq 8 m n+9 m-1 \tag{2}
\end{align*}
$$

Figure 1. [1] The branched-prism graph $H=\left(C_{m} \times P_{2}\right) \odot \overline{K_{n}}$

From (1) and (2), we have the following inequality:

$$
\begin{aligned}
2 m n+2 m+4+(2 m n+3 m-1) d & \leq 8 m n+9 m-1 \\
d & \leq \frac{8 m n+9 m-1-(2 m n+2 m+4)}{2 m n+3 m-1}, \\
& =\frac{6 m n+7 m-5}{2 m n+3 m-1}
\end{aligned}
$$

For $m \geq 3$ and $n \geq 1$, it is clear that $d<3$. Therefore, if H admits the super (a, d)-EAMTL then $d \in\{0,1,2\}$.

The following theorem gives the super (a, d)-EAMTL of H for $d=1$ and $d=2$. The super $(a, 0)$-EAMTL of H, or the super EMTL of H, has been obtained in [1].

Theorem 2.2. Let $H=\left(C_{m} \times P_{2}\right) \odot \overline{K_{n}}$ be the branched-prism graph on $2 m n+2 m$ vertices and $2 m n+3 m$ edges. For odd $m, m \geq 3$ and $n \geq 1$, there exist a super $\left(a_{1}, 1\right)$-edge antimagic total labeling and a super $\left(a_{2}, 2\right)$-edge antimagic total labeling of H, where $a_{1}=4 m n+4 m+2$ and $a_{2}=3 m n+2 m+\frac{(m+1)}{2}+2$.

Proof. Let $H=\left(C_{m} \times P_{2}\right) \odot \overline{K_{n}}$ be the branched-prism graph on $2 m n+2 m$ vertices and $2 m n+3 m$ edges, for odd $m, m \geq 3$ and $n \geq 1$. First, define the vertex labeling $f: V(H) \rightarrow$
$\{1,2, \cdots, 2 m n+2 m\}$ as follows.

$$
\begin{aligned}
f\left(v_{1, i, j}\right) & = \begin{cases}\frac{i+1}{2}+m(j-1), & \text { for odd } i, 1 \leq i \leq m, 1 \leq j \leq n \\
\frac{m+i+1}{2}+m(j-1), & \text { for even } i, 2 \leq i \leq m-1,1 \leq j \leq n\end{cases} \\
f\left(v_{1, i}\right)= & \begin{cases}m n+\frac{i}{2}, & \text { for even } i, 2 \leq i \leq m-1, \\
m n+\frac{m+i}{2}, & \text { for odd } i, 1 \leq i \leq m\end{cases} \\
f\left(v_{2, i}\right)= & \begin{cases}m n+2 m, & \text { for } i=1, \\
m n+m+\frac{i-1}{2}, & \text { for odd } i, 3 \leq i \leq m, \\
m n+m+\frac{m+i-1}{2}, & \text { for even } i, 2 \leq i \leq m-1\end{cases} \\
f\left(v_{2, i, j}\right)= & \begin{cases}m n+2 m+\frac{m-1}{2}+m(j-1), & \text { for } i=1,1 \leq j \leq n \\
m n+3 m+m(j-1), & \text { for } i=2,1 \leq j \leq n, \\
m n+2 m+\frac{i-2}{2}+m(j-1), & \text { for even } i, 4 \leq i \leq m-1,1 \leq j \leq n \\
m n+2 m+\frac{m+i-2}{2}+m(j-1), & \text { for odd } i, 3 \leq i \leq m, 1 \leq j \leq n\end{cases}
\end{aligned}
$$

Denote $S=\{f(x)+f(y) \mid x y \in E(H)\}$ as the set of edge weights of the vertex labeling of H. Therefore, $S=\left\{m n+1+\frac{(m+1)}{2}, m n+\frac{(m+1)}{2}+2, \cdots, 3 m n+3 m+\frac{(m+1)}{2}-1,3 m n+3 m+\frac{(m+1)}{2}\right\}$.

Next, define the edge labeling $f: E(H) \rightarrow\{2 m n+2 m+1,2 m n+2 m+2, \cdots, 4 m n+5 m\}$ as follows. The set of edge weights of the total labeling is denoted by $W=\{f(x)+f(y)+f(x y) \mid$ $x y \in E(H)\}$. It can be seen that $W=\{s+f(x y) \mid x y \in E(H), s \in S\}$. Consider the following cases.
Case 1. $d=2$.
Define the minimum edge weight as

$$
\begin{aligned}
a & =\min \{f(x y) \mid x y \in E(H)\}+\min \{s \mid s \in S\} \\
& =(2 m n+2 m+1)+\left(m n+1+\frac{(m+1)}{2}\right) \\
& =3 m n+2 m+\frac{(m+1)}{2}+2
\end{aligned}
$$

By choosing this minimum value of edge weight, we have the difference $d=2$.
Case 2. $d=1$.
Let $s \in S$. Define the edge labeling of H as follows.

$$
f(x y)= \begin{cases}s, & \text { for } 2 m n+2 m+1 \leq s \leq 3 m n+3 m+\frac{m+1}{2} \\ 2 m n+3 m+s, & \text { for } m n+1+\frac{m+1}{2} \leq s \leq 2 m n+2 m\end{cases}
$$

On super (a, d)-edge antimagic total labeling ...

By defining this edge labeling, the minimum edge-weight is

$$
a=s+f(x y)=(2 m n+2 m+1)+(2 m n+2 m+1)=4 m n+4 m+2 .
$$

Therefore, there exist a super $\left(a_{1}, 1\right)$-EAMTL and a super $\left(a_{2}, 2\right)$-EAMTL of H, where $a_{1}=$ $4 m n+4 m+2$ and $a_{2}=3 m n+2 m+\frac{(m+1)}{2}+2$.

In Figure 2 we give a super $(75,2)$-EAMTL of $\left(C_{5} \times P_{2}\right) \odot \overline{K_{4}}$. The red labels are for the vertices, while the blue ones are for the edges.

Figure 2. A $\operatorname{Super}(75,2)$-EAMTL of $\left(C_{5} \times P_{2}\right) \odot \overline{K_{4}}$

3. Conclusion

This paper shows that the branched-prism graph $H=\left(C_{m} \times P_{2}\right) \odot \overline{K_{n}}$ admits a super $(4 m n+$ $4 m+2,1)$-EAMTL and $\left(3 m n+2 m+\frac{(m+1)}{2}+2,2\right)$-EAMTL for odd $m, m \geq 3, n \geq 1$. Combining this result with [1], we have the super (a, d)-EAMTL of the branched-prism graph for $d \in\{0,1,2\}$.

References

[1] K.A. Azizu, L. Yulianti, S. Sy, N. Narwen, On super edge magic total labeling of the branched-prism graph. International Journal of Progressive Sciences and Technologies 16 (2) (2019), 203 - 206.
[2] M. Baca, M. Miller, Super Edge-Antimagic Graphs: A Wealth of Problems and Some Solutions. Brown Walker Press (2008).

On super (a, d)-edge antimagic total labeling ...
[3] R. Bodendiek, G. Walther, Arithmetisch Antimagische Graphen. In: K. Wagner and R. Bodendiek, eds. Graphentheorie III, BI-Wiss Verl., Mannheim (1993).
[4] J. A. Gallian, A Dynamic survey of graph labeling. Electron. J. Combin. (2020), \#DS6.
[5] N. Hartsfield, G. Ringel, Pearls in Graph Theory. Academic Press. Boston (1990).
[6] R. Simanjuntak, M. Miller, F. Bertault, Two new (a, d)-antimagic graph labeling. Proc. of the Eleventh Australasian Workshop on Combinatorial Algorithms, (2000), 179-189.
[7] K.A. Sugeng, Super edge antimagic total labeling. Util. Math. 71 (2006), 131 - 141.
[8] W.D. Wallis, Magic Graphs. Birkhauser, Boston (2001).

[^0]: ${ }^{1}$ corresponding author
 Received: 10 January 2020, Revised: 13 December 2020, Accepted: 10 February 2021.

