INDONESIAN JOURNAL

OF COMBINATORICS

Super local edge anti-magic total coloring of paths and its derivation

Fawwaz Fakhrurrozi Hadiputra ${ }^{\text {a }}$, Denny Riama Silaban*a, Tita Khalis Maryati ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, FMIPA, Universitas Indonesia, Depok, Indonesia
${ }^{b}$ Department of Mathematics Education, FITK, UIN Syarif Hidayatullah, Ciputat, Indonesia

fawwazfh@sci.ui.ac.id, denny@sci.ui.ac.id, tita.khalis@uinjkt.ac.id

Abstract

Suppose $G(V, E)$ be a graph and suppose u, v, x be vertices of graph G. A bijection $f: V \cup$ $E \rightarrow\{1,2,3, \ldots,|V(G)|+|E(G)|\}$ is called super local edge antimagic total coloring if for any adjacent edges $u v$ and $v x$ in $E(G), w(u v) \neq w(v x)$, which $w(u v)=f(u)+f(u v)+f(v)$ for $f(V)=\{1,2,3, \ldots,|V(G)|\}$. By giving G a labeling f, we denotes the minimum number of distinct weight of edges needed in G as $\gamma_{\text {sleat }}(G)$. In this study, we proved the $\gamma_{\text {sleat }}$ of paths and its derivation.

Keywords: Edge chromatic number, path graphs, super local edge antimagic, total coloring Mathematics Subject Classification: 05C05, 05C15, 05C38, 05C78
DOI: 10.19184/ijc.2019.3.2.6

1. Introduction

For a graph G, a bijection $f: V \cup E \rightarrow\{1,2,3, \ldots,|V(G)|+|E(G)|\}$ assigns each edges to a particular distinct number from 1 up to $|V(G)|+|E(G)|$. Suppose u, v, x be vertices of graph G. Weight of an edge $w(u v)$ is defined as $w(u v)=f(u)+f(u v)+f(v)$ for every edge $u v$ in G. A bijection f is called local edge antimagic total coloring if any adjacent edges $u v$ and $v x, w(u v) \neq w(v x)$. For every distinct weight, we denote them as distinct colors. The local edge antimagic total chromatic number of $G, \gamma_{l e a t}(G)$, is the minimum number of colors for edges taken over all colorings induced by local antimagic total labelings of G. If vertices of G are assigned smaller labels, then we call f as super local edge antimagic total coloring of G, and the minimum number of colors as $\gamma_{\text {sleat }}$. For convenience, we will use the abbreviation SLEAT as super local

[^0]edge anti-magic total. A SLEAT colorable graph is a graph that admits SLEAT coloring. Let $\gamma(G)$ be the edge chromatic number of G. We can observe that $\Delta(G) \leq \gamma(G)$, where $\Delta(G)$ is a maximum degree in graph G. A compilation of observation concludes that $\Delta(G) \leq \gamma(G) \leq$ $\gamma_{\text {leat }}(G) \leq \gamma_{\text {sleat }}(G)$ for an arbitrary graph G.

Ringel firstly introduced the term of antimagic labelings [6]. There are many researchs conducted in antimagic labelings and its variation based on the survey of Gallian [5]. One of many variations is local antimagic labelings.
Arumugam et al. introduced local antimagic as vertex local antimagic edge labelings [3]. Followed by labels addition for the vertex, vertex local antimagic total labelings, one described in by Kurniawati et al. [8]. The analog rises, edge local antimagic total labelings, explained by Agustin et al. in [1] that includes path graph. If every vertex labels are smaller than edge labels, then it is a super local edge antimagic total labelings, which Agustin et al. [2] and Kurniawati et al. [7] describe in some other graph.

In this paper, we study super local edge anti-magic total coloring of path graph, path with edge(s) addition which forms unicycle, connecting two disjoint path, and amalgamation of star. If $\gamma(G)=\gamma_{\text {sleat }}(G)$, then by the prior inequality, $\gamma_{\text {leat }}(G)=\gamma_{\text {sleat }}(G)$. In other words, studies about local edge anti-magic total (LEAT) coloring in all graphs that satisfy $\gamma(G)=\gamma_{\text {sleat }}(G)$ are not necessary.

2. Main Results

2.1. Path Graphs

First, we are going to establish SLEAT for paths. This theorem is used in every proceeding theorems.

Theorem 2.1. Let $n \geq 2$ be integer and P_{n} be a path with n vertices. $\gamma_{\text {sleat }}\left(P_{n}\right)=2$.
Proof. Let $V\left(P_{n}\right)=\left\{v_{i} \mid 1 \leq i \leq n\right\}$ and $E\left(P_{n}\right)=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\}$. Since $\Delta\left(P_{n}\right)=2$, $\gamma_{\text {sleat }}\left(P_{n}\right) \geq 2$. To show $\gamma_{\text {sleat }}\left(P_{n}\right) \leq 2$, define $f: V\left(P_{n}\right) \cup E\left(P_{n}\right) \rightarrow\left\{1,2, \ldots,\left|V\left(P_{n}\right)\right|+\left|E\left(P_{n}\right)\right|\right\}$.

Case 1. n is odd.
Labels vertices and edges as follows

$$
\begin{gathered}
f\left(v_{i}\right)=\left\{\begin{aligned}
\frac{i}{2}, & \text { if } i \text { is even, } \\
\frac{n+i}{2}, & \text { if } i \text { is odd, }
\end{aligned}\right. \\
f\left(v_{i} v_{i+1}\right)= \begin{cases}2 n-i+1, & \text { if } i \text { is even, } \\
2 n-i-1, & \text { if } i \text { is odd. }\end{cases}
\end{gathered}
$$

Hence, we get

$$
w\left(v_{i} v_{i+1}\right)=f\left(v_{i}\right)+f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1}\right)=\left\{\begin{array}{lll}
\frac{5 n+1}{2}+1, & \text { if } i \text { is even, } \\
\frac{5 n+1}{2}-1, & \text { if } i \text { is odd. }
\end{array}\right.
$$

Case 2. n is even.

Labels vertices and edges as follows

$$
\begin{gathered}
f\left(v_{i}\right)=\left\{\begin{array}{rll}
n, & \text { if } \quad i=1, \\
\frac{n+i}{2}-1, & \text { if } \quad i \text { is even, } \\
\frac{i-1}{2}, & \text { if } & \text { odd } i>1,
\end{array}\right. \\
f\left(v_{i} v_{i+1}\right)
\end{gathered}=\left\{\begin{aligned}
n+1, & \text { if } i=1, \\
2 n-i, & \text { if } \quad i \text { is even, } \\
2 n-i+2, & \text { if } \quad \text { odd } i>1 .
\end{aligned}\right.
$$

Hence, we get

$$
w\left(v_{i} v_{i+1}\right)=f\left(v_{i}\right)+f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1}\right)=\left\{\begin{array}{cl}
\frac{5 n}{2}-1, & \text { if } i \text { is even } \\
\frac{5 n}{2}+1, & \text { if } i \text { is odd }
\end{array}\right.
$$

Since in every case there is only two distinct w, therefore f is a SLEAT labeling of P_{n} with $\gamma_{\text {sleat }}\left(P_{n}\right)=2$.

Figure 1: SLEAT coloring of P_{7} and P_{6}

2.2. Unicycle graph

2.2.1. Path with an edge addition

Now, we start to add variation by adding an edge for path, forming a unicycle graph. We want to exclude the possibility of forming a regular cycle.

Theorem 2.2. Let $n \geq 3$ be integer, P_{n} be path, and $G=P_{n}+v_{i} v_{j}$, where $v_{i}, v_{j} \in V\left(P_{n}\right)$, with i and j integers $1 \leq i<j \leq n$ and, except $(i, j)=(1, n)$. $\gamma_{\text {sleat }}(G)=3$.

Proof. Since $\Delta(G)=3, \gamma_{\text {sleat }}(G) \geq 3$. To show that $\gamma_{\text {sleat }}(G) \leq 3$, suppose g is a labeling of the unicycle graph and f is a SLEAT coloring of P_{n} given in the proof of Theorem 2.1. We divide the proof into 4 subcases.

Case 1. n is odd.
Subcase 1.1. Either i or j is odd. Labels vertices and edges as follows

$$
\begin{gathered}
g\left(P_{n}\right)=f\left(P_{n}\right) \\
g\left(v_{i} v_{j}\right)=2 n
\end{gathered}
$$

Hence, we get

$$
w\left(v_{i} v_{j}\right)=g\left(v_{i}\right)+g\left(v_{i} v_{j}\right)+g\left(v_{j}\right)= \begin{cases}3 n+\frac{i+j}{2}, & \text { if } i \text { and } j \text { are odd }, \\ \frac{5}{2} n+\frac{i+j}{2}, & \text { if } i \text { or } j \text { is odd. }\end{cases}
$$

Therefore, we get a minimum value of $w\left(v_{i} v_{j}\right) \geq \frac{5 n+i+j}{2}$. Now, we will show that $w\left(v_{i} v_{j}\right)$ has different value with $w\left(v_{i} v_{i+1}\right)$. It is clear that $w\left(v_{i} v_{i+1}\right)$ has a maximum value of $\frac{5 n+1}{2}+1$. By the premise, $i+j$ has the smallest possible value attainable $i+j \geq 4$. We observe that

$$
w\left(v_{i} v_{j}\right) \geq \frac{5 n+4}{2}>\frac{5 n+1}{2}+1
$$

which implies that $w\left(v_{i} v_{j}\right)$ is a third distinct weight.
Sub-case 1.2. i and j are even. Labels vertices and edges as follows

$$
\begin{gathered}
g\left(V\left(P_{n}\right)\right)=f\left(V\left(P_{n}\right)\right), \\
g\left(E\left(P_{n}\right)\right)=f\left(E\left(P_{n}\right)\right)+1, \\
g\left(v_{i} v_{j}\right)=n+1 .
\end{gathered}
$$

Since every labels of edges is increased by 1 , we will have a new weight of

$$
\begin{gathered}
w\left(v_{i} v_{j}\right)=g\left(v_{i}\right)+g\left(v_{i} v_{j}\right)+g\left(v_{j}\right), \\
w\left(v_{i} v_{i+1}\right)=\left\{\begin{aligned}
\frac{5 n+1}{2}+2 & \text { for } i \text { is even, } \\
\frac{5 n+1}{2} & \text { for } i \text { is odd. }
\end{aligned}\right.
\end{gathered}
$$

and $w\left(v_{i} v_{j}\right)=n+1+\frac{i+j}{2}$. Now, we will show that $w\left(v_{i} v_{j}\right)$ has different value with $w\left(v_{i} v_{i+1}\right)$. It is clear that $w\left(v_{i} v_{i+1}\right)$ has a minimum value of $\frac{5 n+1}{2}$. By the premise, $i+j$ has the largest possible value attainable $i+j \leq 2 n-4$. We observe that

$$
w\left(v_{i} v_{j}\right) \leq n+1+\frac{2 n-4}{2}=2 n-1<\frac{5 n+1}{2}
$$

and $w\left(v_{i} v_{j}\right)$ is a third distinct weight.
Case 2. n is even.
Subcase 2.1. Either i or j is equal to 1 or even. Labels vertices and edges as follows

$$
\begin{gathered}
g\left(P_{n}\right)=f\left(P_{n}\right), \\
g\left(v_{i} v_{j}\right)=2 n .
\end{gathered}
$$

Hence, we get possible weights

$$
w\left(v_{i} v_{j}\right)=\left\{\begin{aligned}
3 n+\frac{i+j}{2}-2, & \text { if } i \text { and } j \text { are even, } \\
\frac{7}{2} n+\frac{j}{2}-1, & \text { if } i=1 \text { and } j \text { is even, } \\
\frac{5}{2} n+\frac{i+j}{2}-\frac{3}{2}, & \text { if } i \text { is even and } j \text { is odd, } \\
\frac{5}{2} n+\frac{i+j}{2}-\frac{3}{2}, & \text { if } i \text { is odd and } j \text { is even, } \\
3 n+\frac{j}{2}-\frac{1}{2}, & \text { if } i=1 \text { and } j \text { is odd. }
\end{aligned}\right.
$$

We will show that $w\left(v_{i} v_{j}\right)$ has different value with $w\left(v_{i} v_{i+1}\right)$. It is clear that $w\left(v_{i} v_{i+1}\right)$ has a maximum value of $\frac{5 n}{2}+1$. A minimum value for these possible weights is needed to be determined.

If both i and j are even, then $i+j$ has smallest value attainable $i+j \geq 2+4=6$, such that $w\left(v_{i} v_{j}\right) \geq 3 n+1$. If $i=1$ and j is even, then j has smallest value attainable $j \geq 4$, such that $w\left(v_{i} v_{j}\right) \geq \frac{7}{2} n+1=\frac{5}{2} n+n+1$. If i is even and j is odd, then $i+j$ smallest value attainable $i+j \geq 2+5=7$, such that $w\left(v_{i} v_{j}\right) \geq \frac{5}{2} n+2$. If $i=1$ and j is odd, then j smallest value attainable $j \geq 3$, such that $w\left(v_{i} v_{j}\right) \geq 3 n+1$.

It can be seen that $w\left(v_{i} v_{j}\right)$ has a minimum value of $\frac{5}{2} n+2 \geq \frac{5}{2} n+1$, since n is even. It means $w\left(v_{i} v_{j}\right)$ is a third distinct weight.

Subcase 2.2. i and j are odd, and both of them does not equal to 1 . Labels as follows

$$
\begin{gathered}
g\left(V\left(P_{n}\right)\right)=f\left(V\left(P_{n}\right)\right), \\
g\left(E\left(P_{n}\right)\right)=f\left(E\left(P_{n}\right)\right)+1, \\
g\left(v_{i} v_{j}\right)=n+1 .
\end{gathered}
$$

since every labels of edges is incremented by 1 , we will have a new weight of

$$
\begin{aligned}
w\left(v_{i} v_{j}\right) & =g\left(v_{i}\right)+g\left(v_{i} v_{j}\right)+g\left(v_{j}\right), \\
w\left(v_{i} v_{i+1}\right) & =\left\{\begin{array}{rr}
\frac{5 n}{2}, & \text { if } i \text { is even, } \\
\frac{5 n}{2}+2, & \text { if } i \text { is odd. }
\end{array}\right.
\end{aligned}
$$

and $w\left(v_{i} v_{j}\right)=n+\frac{i+j}{2}$. We will show that this $w\left(v_{i} v_{j}\right)$ has different value with $w\left(v_{i} v_{i+1}\right)$. It is clear that $w\left(v_{i} v_{i+1}\right)$ has a minimum value of $\frac{5 n}{2}$. By the premise, $i+j$ has the largest attainable value $i+j \leq 2 n-4$. We observe that $w\left(v_{i} v_{j}\right) \leq n+\frac{2 n-4}{2}=2 n-2<\frac{5 n}{2}$. Therefore, $w\left(v_{i} v_{j}\right)$ is a third distinct weight.

Since in every case $\gamma_{\text {sleat }}(G) \leq 3$, we can deduce that g is SLEAT of G with $\gamma_{\text {sleat }}(G)=3$.

2.2.2. Path with some edges addition

This method of edge addition can be done multiple times if it meets certain premises. We need to introduce a convenient even function, defined as follows

$$
\operatorname{even}(n)= \begin{cases}1, & \text { if } n \text { is even } \\ 0, & \text { if } n \text { is odd }\end{cases}
$$

Figure 2: SLEAT coloring of $G=P_{7}+v_{2} v_{5}$ and $G=P_{6}+v_{3} v_{5}$

Theorem 2.3. Let $n \geq 4$ be integer, P_{n} be path, and $G=P_{n}+\left\{v_{i-k} v_{j-k} \mid 0 \leq k \leq p, 0 \leq p \leq\right.$ $\min \{i-1+\operatorname{even}(n), j-i-1\}\}$ where $v_{i-k}, v_{j-k} \in V\left(P_{n}\right), i$ and j satisfy $1 \leq i<j \leq n, i+j$ is odd, and $(i, j) \neq(1, n) . \gamma_{\text {sleat }}(G)=3$

Proof. Since $\Delta(G)=3, \gamma_{\text {sleat }}(G) \geq 3$. To show that $\gamma_{\text {sleat }}(G) \leq 3$, suppose g is a labeling of G and f is a SLEAT coloring of P_{n} given in the proof of Theorem 2.1.
Labels vertices and edges as follows

$$
\begin{gathered}
g\left(P_{n}\right)=f\left(P_{n}\right), \\
g\left(v_{i-k} v_{j-k}\right)=2 n+k .
\end{gathered}
$$

The weight of edge are the following
$w\left(v_{i-k} v_{j-k}\right)=g\left(v_{i-k}\right)+g\left(v_{i-k} v_{j-k}\right)+g\left(v_{j-k}\right)=\left\{\begin{aligned} \frac{5}{2} n+\frac{i+j}{2}, & \text { if } n \text { is odd, } i+j \text { is odd, } \\ \frac{5}{2} n+\frac{i+j}{2}-\frac{3}{2}, & \text { if } n \text { is even, } i+j \text { is odd. }\end{aligned}\right.$
We will show that $w\left(v_{i-k} v_{j-k}\right)$ has different value with $w\left(v_{i} v_{i+1}\right)$. It is clear that $w\left(v_{i} v_{i+1}\right)$ has a maximum value of $\frac{5 n+1}{2}+1$. A minimum value for these possible weights is needed to be determined.

If both n and $i+j$ are odd, then smallest value attainable $i+j \geq 1+3=4$, such that $w\left(v_{i-k} v_{j-k}\right) \geq \frac{5}{2} n+2$. If n is even, $i \neq 1$, and $i+j$ is odd, then smallest value attainable $i+j \geq 2+5=7$, such that $w\left(v_{i-k} v_{j-k}\right) \geq \frac{5}{2} n+2$.

Since $n \geq 4, w\left(v_{i-k} v_{j-k}\right)$ has a minimum value of $\frac{5}{2} n+2>\frac{5 n+1}{2}+1$. As a result, $w\left(v_{i-k} v_{j-k}\right)$ is a third distinct weights. Therefore, g is a SLEAT of G with $\gamma_{\text {sleat }}(G)=3$.

Figure 3: SLEAT coloring of $G=P_{7}+\left\{v_{4-k} v_{7-k} \mid 0 \leq k \leq 2\right\}$

2.3. Connecting disjoint paths

Another kind of graph that is observed in this study is some disjoint paths with addition of edge(s) that connects some paths. Two kinds of this family of graph are hedge graph and hedgerow graph. These two graph will be defined in the proceeding subsections.

2.3.1. Hedge graph

To start, we observe two disjoint paths with addition of one edge that connects the paths. Such graph is called hedge graph $H d$. Before giving the formal definition of hedge graph, we want to exclude the possibility of connection that forms a simple path. For arbitrary set A, B, we use the cartesian products of the two sets $A \times B=\{(a, b) \mid a \in A, b \in B\}$ in order to have simple notations. Let P_{m} and P_{n} be path with $V\left(P_{m}\right)=\left\{v_{k} \mid 1 \leq k \leq m\right\}$ and $V\left(P_{n}\right)=\left\{u_{l} \mid 1 \leq l \leq n\right\}$. We define $H d(m, n, i, j)$ as follows

$$
\begin{gathered}
V(H d(m, n, i, j))=V\left(P_{m}\right) \cup V\left(P_{n}\right) \\
E(H d(m, n, i, j))=E\left(P_{m}\right) \cup E\left(P_{n}\right) \cup\left\{v_{i} u_{j} \mid 1 \leq i \leq m, 1 \leq j \leq n,(i, j) \notin(1, n) \times(1, m)\right\} .
\end{gathered}
$$

Theorem 2.4. For integers $n \geq m \geq 3$, if $G=H d(m, n, i, j)$, then $\gamma_{\text {sleat }}(G)=3$.
Proof. Since $\Delta(G)=3, \gamma_{\text {sleat }}(G) \geq 3$. To show that $\gamma_{\text {sleat }}(G) \leq 3$, suppose g is a labeling of G and f is a SLEAT coloring of P_{n} given in the proof of Theorem 2.1.

Case 1. $i \neq j$.
Add an edge $v_{1} u_{1}$ to form a P_{m+n}, apply labeling f in a path P_{m+n} from v_{n} to u_{m}, then remove $v_{1} u_{1}$. Now, g is a labelings that follows

$$
\begin{aligned}
g\left(v_{i} u_{j}\right) & =f\left(v_{1} u_{1}\right), \\
g(V(G)) & =f\left(V\left(P_{m+n}\right)\right), \\
g\left(E(G) \backslash\left\{v_{i} u_{j}\right\}\right) & =f\left(E\left(P_{m+n}\right) \backslash\left\{v_{1} u_{1}\right\}\right) .
\end{aligned}
$$

If $n+m$ is odd, we have the following weight

$$
w\left(v_{i} v_{i+1}\right)=w\left(u_{i} u_{i+1}\right)= \begin{cases}\frac{5 n+1}{2}+1, & \text { if } i \text { is even } \\ \frac{5 n+1}{2}-1, & \text { if } i \text { is odd }\end{cases}
$$

As for $n+m$ is even, we have the following weight

$$
w\left(v_{i} v_{i+1}\right)=w\left(u_{i} u_{i+1}\right)= \begin{cases}\frac{5 n}{2}-1, & \text { if } i \text { is even } \\ \frac{5 n}{2}+1, & \text { if } i \text { is odd. }\end{cases}
$$

We get $g\left(v_{1}\right)+g\left(v_{i} u_{j}\right)+g\left(u_{1}\right)=w\left(v_{i} v_{i+1}\right)=w\left(u_{i} u_{i+1}\right)$ for even i. Now, we can observe the partition $\left\{g\left(v_{i}\right)\right\}$ and $\left\{g\left(u_{j}\right)\right\}$ for arbitrary i and j, to find that there is no pair of $\left(g\left(v_{i}\right), g\left(u_{j}\right)\right)$ such that $g\left(v_{i}\right)+g\left(u_{j}\right)=g\left(v_{1}\right)+g\left(u_{1}\right)$ which satisfies $i \neq j$. Hence, $w\left(v_{i} u_{j}\right) \neq w\left(v_{i} v_{i+1}\right)$ and $w\left(v_{i} u_{j}\right) \neq w\left(v_{i} v_{i+1}\right)$ for even i.

Next, we get $g\left(v_{1}\right)+g\left(v_{i} u_{j}\right)+g\left(u_{1}\right)-2=w\left(v_{i} v_{i+1}\right)=w\left(u_{i} u_{i+1}\right)$ or $g\left(v_{1}\right)+g\left(v_{i} u_{j}\right)+$ $g\left(u_{1}\right)+2=w\left(v_{i} v_{i+1}\right)=w\left(u_{i} u_{i+1}\right)$ for odd i. Again, we can observe the partition $\left\{g\left(v_{i}\right)\right\}$ and $\left\{g\left(u_{j}\right)\right\}$ for arbitrary i and j, to find that there is no pair of $\left(g\left(v_{i}\right), g\left(u_{j}\right)\right)$ such that $g\left(v_{i}\right)+g\left(u_{j}\right)=$ $g\left(v_{1}\right)+g\left(u_{1}\right)-2$ or $g\left(v_{i}\right)+g\left(u_{j}\right)=g\left(v_{1}\right)+g\left(u_{1}\right)+2$. Hence, $w\left(v_{i} u_{j}\right) \neq w\left(v_{i} v_{i+1}\right)$ and $w\left(v_{i} u_{j}\right) \neq w\left(v_{i} v_{i+1}\right)$ for odd i.

Case 2. $i=j$, and $n \neq m$.

Add an edge $v_{n} u_{m}$ to form a P_{m+n}, apply labeling f to path P_{m+n} from v_{1} to u_{1}, then remove $v_{n} u_{m}$. Now, g is a labelings that follows

$$
\begin{gathered}
g\left(v_{i} u_{j}\right)=f\left(v_{n} u_{m}\right), \\
g(V(G))=f\left(V\left(P_{m+n}\right)\right), \\
g\left(E(G) \backslash\left\{v_{i} u_{j}\right\}\right)=f\left(E\left(P_{m+n}\right) \backslash\left\{v_{n} u_{m}\right\}\right) .
\end{gathered}
$$

If $n+m$ is odd, we have the following weight

$$
w\left(v_{i} v_{i+1}\right)=w\left(u_{i+1} u_{i+2}\right)= \begin{cases}\frac{5 n+1}{2}+1, & \text { if } i \text { is even } \\ \frac{5 n+1}{2}-1, & \text { if } i \text { is odd }\end{cases}
$$

With the addition of $w\left(u_{1} u_{2}\right)=\frac{5 n+1}{2}+1$. As for $n+m$ is even, we have the following weight

$$
w\left(v_{i} v_{i+1}\right)=w\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{cl}
\frac{5 n}{2}-1, & \text { if } i \text { is even } \\
\frac{5 n}{2}+1, & \text { if } i \text { is odd. }
\end{array}\right.
$$

We get $g\left(v_{n}\right)+g\left(v_{i} u_{j}\right)+g\left(u_{m}\right)=w\left(v_{i} v_{i+1}\right)=w\left(u_{i+1} u_{i+2}\right)=w\left(u_{1} u_{2}\right)$ for n and i that have the same parity. Now, we can observe the partition $\left\{g\left(v_{i}\right)\right\}$ and $\left\{g\left(u_{i}\right)\right\}$ for arbitrary i, to find that there is no pair of $\left(g\left(v_{i}\right), g\left(u_{i}\right)\right)$ such that $g\left(v_{i}\right)+g\left(u_{i}\right)=g\left(v_{n}\right)+g\left(u_{m}\right)$. Hence, $w\left(v_{i} u_{j}\right)$ does not equal any of $w\left(v_{i} v_{i+1}\right), w\left(u_{i+1} u_{i+2}\right)$, or $w\left(u_{1} u_{2}\right)$.

Next, we get $g\left(v_{n}\right)+g\left(v_{i} u_{j}\right)+g\left(u_{m}\right)-2$ or $g\left(v_{1}\right)+g\left(v_{i} u_{j}\right)+g\left(u_{1}\right)+2$ to be equal with $w\left(v_{i+1} v_{i+2}\right)=w\left(u_{i} u_{i+1}\right)=w\left(v_{1} v_{2}\right)$ for n and i have different parity. Again, we can observe the partition $\left\{g\left(v_{i}\right)\right\}$ and $\left\{g\left(u_{i}\right)\right\}$ for arbitrary i, to find that there is no pair of $\left(g\left(v_{i}\right), g\left(u_{i}\right)\right)$ such that $g\left(v_{i}\right)+g\left(u_{i}\right)=g\left(v_{n}\right)+g\left(u_{m}\right)-2$ or $g\left(v_{i}\right)+g\left(u_{i}\right)=g\left(v_{n}\right)+g\left(u_{m}\right)+2$. Hence, $w\left(v_{i} u_{j}\right)$ does not equal any of $w\left(v_{i+1} v_{i+2}\right), w\left(u_{i} u_{i+1}\right)$, or $w\left(v_{1} v_{2}\right)$.

Case 3. $i=j$, and $n=m$, except $n=3$.
Since the graph with $i=2$ is isomorphic with $i=n-1$, it is only necessary to determine labels for $i \geq 3$.

Add an edge $v_{1} u_{1}$ to form a path P_{m+n}, apply labeling f to P_{m+n} from v_{n} to u_{m}, then remove $v_{1} u_{1}$.
If n is odd, g is a labelings that follows

$$
g\left(v_{i} u_{j}\right)=f\left(u_{1} u_{2}\right)
$$

Super local edge anti-magic total coloring of ... | F. F. Hadiputra, D. R. Silaban and T. K. Maryati

$$
\begin{gathered}
g\left(u_{1} u_{2}\right)=f\left(v_{1} u_{1}\right), \\
g(V(G))=f\left(V\left(P_{m+n}\right)\right), \\
g\left(E(G) \backslash\left\{v_{i} u_{j} \cup u_{1} u_{2}\right\}\right)=f\left(E\left(P_{m+n}\right) \backslash\left\{v_{1} u_{1} \cup u_{1} u_{2}\right\}\right) .
\end{gathered}
$$

If n is even, g is a labelings that follows

$$
\begin{gathered}
g\left(v_{i} u_{j}\right)=f\left(v_{1} v_{2}\right), \\
g\left(v_{1} v_{2}\right)=f\left(v_{1} u_{1}\right), \\
g(V(G))=f\left(V\left(P_{m+n}\right)\right), \\
g\left(E(G) \backslash\left\{v_{i} u_{j} \cup v_{1} v_{2}\right\}\right)=f\left(E\left(P_{m+n}\right) \backslash\left\{v_{1} u_{1} \cup v_{1} v_{2}\right\}\right) .
\end{gathered}
$$

By preceding labelings, we have the following weight

$$
w\left(v_{i+1} v_{i+2}\right)=w\left(u_{i+1} u_{i+2}\right)= \begin{cases}\frac{5 n}{2}-1, & \text { if } i \text { is even, } \\ \frac{5 n}{2}+1, & \text { if } i \text { is odd. }\end{cases}
$$

In addition, if n is odd, $w\left(v_{1} v_{2}\right)=w\left(v_{i+1} v_{i+2}\right)$ and $w\left(u_{1} u_{2}\right)=w\left(v_{i} u_{j}\right)$. While if n is even, $w\left(u_{1} u_{2}\right)=w\left(u_{i+1} u_{i+2}\right)$ and $w\left(v_{1} v_{2}\right)=w\left(v_{i} u_{j}\right)$. By case 1 , it is already proven that $w\left(v_{i} u_{j}\right)$ is distinct.

Case 4. $i=j=2$, and $n=m=3$.
This is the only one specific graph that does not belong to any preceding case. Thus, we can simply do an enumeration for completing the theorem. Labels the graph G as in Figure 4.

Since every possible graph is covered, therefore $\gamma_{\text {sleat }}(H d(m, n, i, j))=3$.

Figure 4: SLEAT coloring of $H d(4,3,3,2), H d(5,4,2,2), H d(4,4,3,3)$, and $H d(3,3,2,2)$

2.3.2. Hedgerow

Suppose we have m disjoint paths with length of n. Every neighbouring path is connected with an edge that is uniform through every two connected paths. Such graph is called hedgerow graph $H r$. Let $m P_{n}$ be the disjoint union of m number of P_{n} with $V\left(m P_{n}\right)=\left\{v_{l}^{k} \mid 1 \leq l \leq n, 1 \leq k \leq\right.$ $m\}$. Formally, we define hedgerow graph $\operatorname{Hr}(m, n, i, j)$ as follows

$$
\begin{gathered}
V(H r(m, n, i, j))=V\left(m P_{n}\right) \\
E(H r(m, n, i, j))=E\left(m P_{n}\right) \cup\left\{v_{i}^{k} v_{j}^{k+1} \mid 1 \leq i \leq n, 1 \leq j \leq n, 1 \leq k \leq m-1\right\} .
\end{gathered}
$$

We start an attempt to find hedgerow for $m \geq 3$. We only find the value of $\gamma_{\text {sleat }}$ for hedgerow graph for some (m, n, i, j).

Theorem 2.5. Let integer $m \geq 2$ and integer $n \geq 2$. For $G \cong \operatorname{Hr}(m, n, i, j)$,

1. If n is even, $i \neq j$, and $i \neq n-j+1$, then $\gamma_{\text {sleat }}(G)=3$.
2. If m is odd, $i=j$, and $i \notin\{1, n\}$, then $\gamma_{\text {sleat }}(G)=4$.

Proof. By Theorem 2.1, we have f, SLEAT labelings of path graph. Suppose g is SLEAT labelings of the connected multiple path.

Case 1. n is even, $i \neq j$, and $i \neq n-j+1$
Since $\Delta(G)=3, \gamma_{\text {sleat }}(G) \geq 3$. Next, we will show that $\gamma_{\text {sleat }}(G) \leq 3$. Since the graph has reflexive form, if $i=1$ we can redefine $(i, j)=\left(1, j^{\prime}\right)$ into $(i, j)=\left(j^{\prime}, 1\right)$, thus we only consider $i \geq 2$. Add edges $v_{n}^{k} v_{1}^{k+1}$ for every integer $k \in[1, m]$, forming $P_{m n}$, apply f in a path from v_{1}^{1} to v_{n}^{m}. Now, for every integer $k \in[1, m-1], g$ is a labeling that follows

$$
\begin{gathered}
g\left(v_{i}^{k} v_{j}^{k+1}\right)=f\left(v_{n}^{k} v_{1}^{k+1}\right), \\
g\left(V(G)=f\left(V\left(P_{m n}\right)\right),\right. \\
g\left(E \left(G \backslash\left(\cup_{k}\left\{v_{i}^{k} v_{j}^{k+1}\right\}\right)=f\left(E \left(P_{m n} \backslash\left(\cup_{k}\left\{v_{n}^{k} v_{1}^{k+1}\right\}\right)\right.\right.\right.\right.
\end{gathered}
$$

In the proof of Theorem 2.4, we have shown that $w\left(v_{i}^{1} v_{j}^{2}\right)$ with two other weights in the paths, with restriction of $i \neq n-j+1$. Hence, we have the weights

$$
w\left(v_{i}^{k} v_{i+1}^{k}\right)= \begin{cases}\frac{5}{2} n m-1, & \text { if } i \text { is even } \\ \frac{5}{2} n m+1, & \text { if } i \text { is odd }\end{cases}
$$

Originally, $f\left(v_{n}^{k}\right)+f\left(v_{n}^{k} v_{1}^{k+1}\right)+f\left(v_{1}^{k+1}\right)$ is constant for every integer $k \in[1, m-1]$. Since $g\left(v_{n}^{k}\right)-g\left(v_{i}^{k}\right)$ and $g\left(v_{1}^{k+1}\right)-g\left(v_{j}^{k+1}\right)$ are constant for the same k, we have third distinct weight $w\left(v_{i}^{k} v_{j}^{k+1}\right)$. Hence, $\gamma_{\text {sleat }}(G)=3$.

Case 2. m is odd, $i=j$, and $i \notin\{1, n\}$

Since $\Delta(G)=4, \gamma_{\text {sleat }}(G) \geq 4$. Next, we will show that $\gamma_{\text {sleat }}(G) \leq 4$. Add edges $v_{n}^{k} v_{n}^{k+1}$ for every odd integer $k \in[1, m-2]$ and $v_{1}^{k} v_{1}^{k+1}$ for every even integer $k \in[2, m-1]$, forming $P_{m n}$, apply f in a path from v_{1}^{1} to v_{n}^{m}. Now, for every integer $k \in[1, m-1]$ and integer $k^{\prime} \in\left[1, \frac{m-1}{2}\right], g$ is a labeling that follows

$$
\begin{gathered}
g\left(v_{i}^{k} v_{i}^{k+1}\right)= \begin{cases}f\left(v_{n}^{k} v_{n}^{k+1}\right) & \text { for } k \text { is odd, } \\
f\left(v_{1}^{k} v_{1}^{k+1}\right) & \text { for } k \text { is even, }\end{cases} \\
g(V(G))=f\left(V\left(P_{m n}\right)\right), \\
g\left(E\left(G \backslash\left(\cup_{k}\left\{v_{i}^{k} v_{i}^{k^{\prime}+1}\right\}\right)\right)\right)=g\left(E\left(P_{m n} \backslash\left(\cup_{k}^{\prime}\left\{v_{1}^{2 k^{\prime}} v_{1}^{2 k^{\prime}+1}, v_{n}^{2 k^{\prime}-1} v_{n}^{2 k^{\prime}}\right\}\right)\right)\right) .
\end{gathered}
$$

Since $f\left(v_{1}^{2 k^{\prime}} v_{1}^{2 k^{\prime}+1}\right)-f\left(v_{n}^{2 k^{\prime}-1} v_{n}^{2 k^{\prime}}\right)$ is constant for every $k^{\prime} \in\left[1, \frac{m-1}{2}\right], w\left(v_{1}^{2 k^{\prime}} v_{1}^{2 k^{\prime}+1}\right)$ is constant for every $k, w\left(v_{n}^{2 k^{\prime}-1} v_{n}^{2 k^{\prime}}\right)$ is constant for every k, and $w\left(v_{1}^{2 k^{\prime}} v_{1}^{2 k^{\prime}+1}\right) \neq w\left(v_{n}^{2 k^{\prime}-1} v_{n}^{2 k^{\prime}}\right)$. Hence, $\gamma_{\text {sleat }}(G)=4$.

Therefore, the theorem holds.

Figure 5: SLEAT coloring of $\operatorname{Hr}(4,4,4,3)$ and $\operatorname{Hr}(5,4,2,2)$

The same procedure can also be applied if $i \in\{1, n\}$ for G, but it will not give an exact value of $\gamma_{\text {sleat }}(G)$ since $\gamma(G)$ is still lower than the number of the weights. Despite the uncertainty, we establish the corollary as follows.

Corollary 2.1. Let integer $n \geq 2$ and odd integer $m \geq 3$. If $G \cong \operatorname{Hr}(m, n, i, i)$, then $3 \geq$ $\gamma_{\text {sleat }}(G) \geq 4$

It can be seen that the graph from the corollary is isomorphic with the comb product of P_{m} with P_{n-1}. We revised a theorem that given by Kurniawati et al. in [7].

We attempted to find the value for some (m, n, i, j) that did not satisfy preceding theorem premises, but it is not completed yet. It is left as an open problem.

Open Problem 1. Find the value of $\gamma_{\text {sleat }}(H r(m, n, i, j))$ for remaining cases of (m, n, i, j).

2.4. Amalgamation of Star

We proceed by finding SLEAT for star graph. Star graph is denoted as S_{m} where $V\left(S_{m}\right)=$ $\left\{c, v_{i} \mid 1 \leq i \leq m\right\}$ and $E\left(S_{m}\right)=\left\{c v_{i} \mid 1 \leq i \leq m\right\}$. Since every edge in the graph is adjacent, $\gamma\left(S_{m}\right)=m$. Since $\gamma(G) \leq \gamma_{\text {sleat }}(G) \leq|E(G)|$ for arbitrary graph G, it is clear that $\gamma_{\text {sleat }}\left(S_{m}\right)=$ m. If one want an example how to achieve such graph, labels as follows $f\left(v_{i}\right)=i, f(c)=$ $m+1, f\left(c v_{i}\right)=m+i+1$. The weights is going to be consecutive by 2 as the common difference.

In this section, we study an amalgamation of star and graph which have certain $\gamma_{\text {sleat }}$.
Theorem 2.6. Suppose G_{1} be a SLEAT colorable graph and $G_{2} \cong \operatorname{Amal}\left(S_{m}, G_{1} ; c\right)$ which vertex c is a center in S_{m}, for integer $m \geq 1 . \gamma_{\text {sleat }}\left(G_{2}\right) \leq \gamma_{\text {sleat }}\left(G_{1}\right)+m$

Proof. Let $n_{v}=\left|V\left(G_{1}\right)\right|$ and $n_{e}=\left|E\left(G_{1}\right)\right|$. Suppose g is the SLEAT labelings of G_{1} and f is the SLEAT labelings of G_{2}. Labels as follows:

$$
\begin{gathered}
g\left(V\left(G_{1}\right)\right)=f\left(V\left(G_{1}\right)\right), \\
g\left(E\left(G_{1}\right)\right)=f\left(E\left(G_{1}\right)\right)+m, \\
g\left(v_{i}\right)=n_{v}+i, \\
g\left(c v_{i}\right)=n_{v}+n_{e}+m+i .
\end{gathered}
$$

Let w_{f} is weights as a result of f. Now, we define $w_{f}^{\prime}=w_{f}+m$. Next, we define w_{s} as $w_{s}=g\left(v_{i}\right)+g\left(c v_{i}\right)+g(c)=2 n_{v}+n_{e}+m+2 i+f(c)$. Now, every distinct w_{f}^{\prime} and every distinct w_{s} are weights that is generated from g. What is left to prove is $w_{f}^{\prime} \neq w_{s}$ for arbitrary possible weights.
Let p is the lowest $f(c)$ for arbitrary c. Since p is adjacent with any w_{f}^{\prime}, we can observe the upper bound for w_{f}^{\prime} by assuming w_{f}^{\prime} contains the largest vertex label n_{v}, and largest edge label $n_{v}+n_{e}+m$. As a result,

$$
w_{f}^{\prime} \leq n_{v}+n_{v}+n_{e}+m+p=2 n_{v}+n_{e}+m+p
$$

Now, we can find the lower bound any w_{s}, by choosing the lowest possible $i=1$, then

$$
w_{s} \geq 2 n_{v}+n_{e}+m+p+2
$$

It is clear that $2 n_{v}+n_{e}+m+p+2 \geq 2 n_{v}+n_{e}+m+p$. Therefore, $w_{f}^{\prime} \neq w_{s}$ for arbitrary possible weights. This holds the theorem.

The preceding theorem applies for any vertex c in graph G_{1}. By choosing certain c, we have Corollary 2.2.

Corollary 2.2. Let G_{1} is a SLEAT colorable graph and $G_{2} \cong \operatorname{Amal}\left(S_{m}, G_{1} ; c\right)$ which vertex c is a center in S_{m}, for integer $m \geq 1$. If $\operatorname{deg}(c)=\Delta\left(G_{2}\right), \gamma_{\text {sleat }}\left(G_{2}\right)=\gamma_{\text {sleat }}\left(G_{1}\right)+m$.

Super local edge anti-magic total coloring of ... | F. F. Hadiputra, D. R. Silaban and T. K. Maryati

Figure 6: SLEAT coloring of $\operatorname{Amal}\left(S_{3}, \operatorname{Hd}(5,4,2,2), c\right)$ and $\operatorname{Amal}\left(S_{4}, P_{6}, c\right)$

3. Summary

Here we summarize our results in Table 1.
Table 1: Summary

Graph	Notation	$\gamma_{\text {sleat }}$	Condition
Path	P_{n}	2	
Path + edge	$P_{n}+v_{i} v_{j}$	3	$\begin{aligned} & 1 \leq i<j \leq n, \text { and }(i, j) \neq \\ & (1, n) \end{aligned}$
Path + multiple edges	$P_{n}+\left\{v_{i-k} v_{j-k} \mid 0 \leq k \leq p\right\}$	3	$\begin{aligned} & 1 \leq i<j \leq n, i+j \text { is odd } \\ & 0 \leq p \leq \min \{i-1+\operatorname{even}(n), j- \\ & i-1\} \text { and }(i, j) \neq(1, n) \end{aligned}$
Hedge graph	$H d(m, n, i, j)$	3	$v_{i} \in V\left(P_{n}\right), u_{j} \in V\left(P_{m}\right), \text { and }$ $(i, j) \notin(1, n) \times(1, m)$
Hedgerow graph	$H r(m, n, i, j)$	3	n is even, $i \neq j$, and $i \neq n-j+1$
Hedgerow graph	$H r(m, n, i, j)$	4	m is odd, $i=j$, and $i \notin\{1, n\}$
Star	S_{n}	n	
Amalgamation of star	$\operatorname{Amal}\left(G, S_{n} ; c\right)$	$\begin{array}{lr} \text { at } \quad \text { most } \\ \gamma_{\text {sleat }}(G)+n \end{array}$	$c \in V(G), V\left(S_{n}\right)$ and c is center in S_{n}
Amalgamation of star	$\operatorname{Amal}\left(G, S_{n} ; c\right)$	$\gamma_{\text {sleat }}(G)+n$	$\begin{aligned} & c \in V(G), V\left(S_{n}\right), c \text { is center in } \\ & S_{n}, \text { and } \operatorname{deg}(c)=\Delta(G) \end{aligned}$

Acknowledgement

Part of this research is funded by Universitas Indonesia through Hibah PITTA B UI under contract 168 No. NKB-0622/UN2.R3.1/HKP.05.00/2019.

Super local edge anti-magic total coloring of ... | F. F. Hadiputra, D. R. Silaban and T. K. Maryati

References

[1] I. H. Agustin, Dafik, M. Hasan, R. Alfarisi, and R. M. Prihandini, On the local edge antimagic coloring of graphs, Far East J. Math. Sci. 102 (9) (2017) 1925-1941.
[2] I. H. Agustin, R. Alfarisi, Dafik, and A. I. Kristiana, On super local antimagic total edge coloring of some wheel related graphs, AIP Conf. Proc. 2014 (2018) 020088.
[3] S. Arumugam, K. Premalatha, M. Bača, and A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33 (2017) 275-285.
[4] R. Bodendiek and G. Walther, On arithmetic antimagic edge labelings of graphs, Mitt. Math. Ges. Hamburg 17 (1998) 85-99.
[5] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 21 (2018)\#DS6.
[6] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, San Diego (1990).
[7] E. Y. Kurniawati, I. H. Agustin, Dafik, and R. Alfarisi, Super local edge antimagic total coloring of $P_{n} \triangleright H$, IOP Conf. Series: J. Phys.: Conf. Series 1008 (2018) 012036 1-11.
[8] E. Y. Kurniawati, I. H. Agustin, Dafik, and Marsidi, On the vertex local antimagic total labeling chromatic number of $G \odot K_{2}$, IOP Conf. Series: J. Phys.: Conf. Series 1211 (2019) 012018 1-8.

[^0]: Received: 9 Jul 2019, Revised: 16 Oct 2019, Accepted: 15 Nov 2019.
 *Corresponding Author: denny@sci.ui.ac.id (Denny Riama Silaban).

