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Abstract

Burger and Vuuren defined the size multipartite Ramsey number for a pair of complete, balanced,
multipartite graphs mj(Ka×b, Kc×d), for natural numbers a, b, c, d and j, where a, c ≥ 2, in 2004.
They have also determined the necessary and sufficient conditions for the existence of size multi-
partite Ramsey numbers mj(Ka×b, Kc×d). Syafrizal et. al. generalized this definition by removing
the completeness requirement. For simple graphs G and H, they defined the size multipartite
Ramsey number mj(G,H) as the smallest natural number t such that any red-blue coloring on
the edges of Kj×t contains a red G or a blue H as a subgraph. In this paper, we determine the
necessary and sufficient conditions for the existence of multipartite Ramsey numbers mj(G,H),
where both G and H are non complete graphs. Furthermore, we determine the exact values of the
size multipartite Ramsey numbers mj(K1,m, K1,n) for all integers m,n ≥ 1 and j = 2, 3, where
K1,m is a star of order m + 1. In addition, we also determine the lower bound of m3(kK1,m, C3),
where kK1,m is a disjoint union of k copies of a star K1,m and C3 is a cycle of order 3.
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1. Introduction

The classical Ramsey number r(a, c) is the smallest natural number j such that any red-blue
coloring of the edges of Kj , necessarily forces a red Ka or a blue Kc as subgraph. The size
multipartite Ramsey number is one of generalizations of the classical Ramsey number. Burger
and Vuuren [1] gave a definition of the size multipartite Ramsey numbers for a pair of complete,
balanced, multipartite graphs, as follows. Let a, b, c, d and j, be natural numbers with a, c ≥ 2, the
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size multipartite Ramsey number mj(Ka×b, Kc×d) is the smallest natural number t such that any
red-blue coloring of the edges of Kj×t, necessarily forces a red Ka×b or a blue Kc×d as subgraph.
They also determined mj(K2×2, K3×1), for j ≥ 1 and have established the following existence of
size multipartite Ramsey numbers.

Theorem 1.1. (The existence of size numbers) [1]
The size multipartite Ramsey numbers mj(Ka×b, Kc×d) exists for any a, c ≥ 2 and b, d ≥ 1 if and
only if j ≥ r(a, c).

Syafrizal et. al. [10] generalized this definition by removing the completeness requirement. For
simple graphs G and H, they defined the size multipartite Ramsey number mj(G,H) as the small-
est natural number t such that any red-blue coloring on the edges of Kj×t contains a red G or a
blue H as a subgraph. The size bipartite Ramsey numbers for stars versus paths m2(K1,m, Pn), for
m,n ≥ 2 given by Hattingh and Henning [3]. In 2007, Syafrizal et al. [11] determined the size
multipartite Ramsey numbers for stars versus P3. Then, Surahmat et al. [9] gave the size tripartite
Ramsey numbers for stars versus Pn, for 3 ≤ n ≤ 6. Furthermore, we gave the size multipartite
Ramsey numbers for stars versus cycles [5] and the size tripartite Ramsey numbers for a disjoint
union of m copies of a star K1,n versus P3 [6]. In 2017, Jayawardene et al. [4] and Effendi et al.
[2] determined the size multipartite Ramsey numbers for stars versus paths. Then, we also gave the
size multipartite Ramsey numbers for stars versus paths and cycles [7], that complete the previous
results given by Syafrizal and Surahmat. Recently, we determined mj(mK1,n, H), where H = P3

or K1,3 for j ≥ 3,m, n ≥ 2 [8].
In this paper, we determine the necessary and sufficient conditions for the existence of the size

multipartite Ramsey numbers mj(G,H), where both G and H are non complete graphs. Further-
more, we determine the exact values of the size multipartite Ramsey numbers mj(K1,m, K1,n)
for all integers m,n ≥ 1 and j = 2, 3. In addition, we also determine the lower bound of
m3(kK1,m, C3).

We call some basic definitions that will be used in this paper, as follows. Let G be a finite and
simple graph. Let vertex and edge sets of graph G are denoted by V (G) and E(G), respectively.
Vertex colorings in which adjacent vertices are colored differently are proper vertex colorings. A
graph G is k-colorable if there exists a proper vertex coloring of G from a set of k colors. A
matching of a graph G is defined as a set of edges without a common vertex. A matching of
maximum size in G is a maximum matching in G. The maximum degree of G is denoted by ∆(G),
where ∆(G) = max{d(v)|v ∈ V (G)}. The minimum degree of G is denoted by δ(G), where
δ(G) = min{d(v)|v ∈ V (G)}. A starK1,n is the graph on n+1 vertices with one vertex of degree
n, called the center of this star, and n vertices of degree 1, called the leaves. A disjoint union of k
copies of a star K1,m, a cycle of order n, and a path of order n are denoted by kK1,m, Cn, and Pn,
respectively.

2. Results

For any non complete graphs G and H, we will determine the necessary and sufficient con-
ditions for the existence of the size multipartite Ramsey numbers mj(G,H). In order to do so,
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we recall the definition of the chromatic number of a graph G, denoted by χ(G), which is the
minimum positive integer k for which G is k-colorable.

Lemma 2.1. In every proper vertex coloring of a simple graph G, the maximum number of the
vertices in G with the same color is |V (G)| − χ(G) + 1.

Proof. Let c be a proper vertex coloring ofG,with χ(G) color, that is c : V (G)→ {1, 2, ..., χ(G)}.
Let Ci = {v ∈ V (G)|c(v) = i}. Without lost generality, let |C1| ≤ |C2| ≤ ... ≤ |Cχ(G)|. Since for
1 ≤ i ≤ χ(G)− 1, we have |Ci| ≥ 1, then |Cχ(G)| ≤ |V (G)| − χ(G) + 1.

Theorem 2.1. Let G and H be two non complete graph. The multipartite Ramsey numbers
mj(G,H) are finite if and only if j ≥ maks{χ(G), χ(H)}.

Proof. Let mj(G,H) = t < ∞, that is Kj×t → (G,H). If Kj×t = F1 ⊕ F2, then (F1 + G ⇒
F2 ⊇ H) or (F2 + H ⇒ F1 ⊇ G). This implies that j ≥ χ(H) and j ≥ χ(G)}. Therefore,
j ≥ maks{χ(G), χ(H)}.

Let j ≥ maks{χ(G), χ(H)}. We show that mj(G,H) is finite. We construct an positive
integer t such that Kj×t → (G,H). Let p = |V (G)| − χ(G) + 1, q = |V (H)| − χ(H) + 1
and t = p + q. Note that V (Kj×t) = V (Kj×p) ∪ V (Kj×q). Based on Lemma 2.1, p and q are
the maximum number of the same colored vertices in G and H, respectively, so Kj×p ⊇ G and
Kj×q ⊇ H . Therefore, Kj×t → (G,H). Then, mj(G,H) ≤ t. Since graph G and H are finite
graph, so |V (G)|, |V (H)|, χ(G) and χ(H) are finite. So, mj(G,H) ≤ t <∞. Then, mj(G,H) is
finite.

Theorem 2.2. For positive integers m and n, we have m2(K1,m, K1,n) = m+ n− 1.

Proof. We will show that m2(K1,m, K1,n) ≥ m + n − 1. We consider a red-blue coloring on the
edges of graphK2×(m+n−2) = FR⊕FB, such that FR is a (m−1)−regular graph. By Handshaking
Lemma, it is possible since the sum of the degrees of the vertices of FR is even. Then, FR + K1,m.
We have d(v) = m+ n− 2− (m− 1) = n− 1, for any v in FB. Hence, FB + K1,n.

Now, we will show thatm2(K1,m, K1,n) ≤ m+n−1.We consider any red-blue coloring on the
edges of graphK2×(m+n−1) = GR⊕GB, such thatGR + K1,m. This implies that ∆(GR) ≤ m−1.
Therefore, δ(GB) ≥ m+ n− 1− (m− 1) = n. Then, GB ⊇ K1,n.

Theorem 2.3. For positive integers m and n, we have

m3(K1,m, K1,n) =



m
2
, for m ≡ 2 mod 4, n = 1, 2

2bm+1
4
c+ 2dn

4
e, for m ≡ 2 mod 4, n ≡ 3 mod 4,

2bm−1
4
c+ 2dn

4
e, for m ≡ 4 mod 4, n ≡ 1 mod 4,

m−1
2

+ dn
2
e, for m ≡ 1 mod 2, n ≥ 1,

2bm+1
4
c+ 2bn

4
c+ 1, for m ≡ 2 mod 4, n 6= 3 mod 4, n ≥ 4,

2bm−1
4
c+ 2dn

4
e+ 1, for m ≡ 4 mod 4, n 6= 1 mod 4.

Proof. Case 1. m3(K1,m, K1,n) = m
2
, for m ≡ 2 mod 4, and n = 1, 2.
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For n = 1, we will use the property that m3(K1,m, K1) ≤ m3(K1,m, K1,1). It is clear that
m3(K1,m, K1) = m

2
. Therefore, m3(K1,m, K1,1) ≥ m

2
. If K3×m

2
contains no a blue K1,1, then

K3×m
2

contains a red K1,m, since d(v) = m, for any v in K3×m
2
. Hence, m3(K1,m, K1,1) ≤ m

2
.

For m = n = 2, it is clear that m3(K1,m, K1,n) ≥ m
2
. For m ≡ 6 mod 4 and n = 2, we

consider a red-blue coloring on the edges of graph K3×(m
2
−1), such that K3×(m

2
−1) contains a max-

imum blue matching graph. Since m
2
−1 is even, the blue graph is a 1−regular graph. This implies

that graph K3×(m
2
−1) contains red (m − 3)−regular graph. So K3×(m

2
−1) contains no a red K1,m.

Then, m3(K1,m, K1,2) ≥ m
2
. Furthermore, we consider any red-blue coloring on the edges of graph

K3×m
2
, such that graph K3×m

2
contains no a blue K1,2. This implies that the maximum degree of

blue graph is 1. Since m
2

is odd, then there is at least one vertex v, where d(v) = 0 in blue graph
and d(v) = m in red graph. Then, K3×m

2
contains a red K1,m. Therefore, m3(K1,m, K1,2) ≤ m

2
.

Case 2. For (m ≡ 2 mod 4 and n ≡ 3 mod 4), let t = 2bm+1
4
c+ 2dn

4
e and for (m ≡ 4 mod 4 and

n ≡ 1 mod 4), let t = 2bm−1
4
c+ 2dn

4
e.

We consider a red-blue coloring on the edges of graph K3×(t−1) = FR⊕FB, such that d(v1) =
m− 2, for a vertex v1 ∈ V (FR) and d(v) = m− 1, for any v ∈ V (FR)− {v1}. By Handshaking
Lemma, it is possible since the sum of the degrees of the vertices of FR is even. Then, FR + K1,m.
We distinguish the following two cases, to show that m3(K1,m, K1,n) ≥ t.

Case a. For m ≡ 2 mod 4 and n ≡ 3 mod 4.
We have d(v1) = 2t−m = 4bm+1

4
c+4dn

4
e−m = m−2+n+1−m = n−1, for v1 ∈ V (FB)

and d(v) = 2t−m− 1 = 4bm+1
4
c+ 4dn

4
e −m− 1 = m− 2 + n+ 1−m− 1 = n− 2, for any

v ∈ V (FB)− {v1}. Then, FB + K1,n.
Case b. For m ≡ 4 mod 4 and n ≡ 1 mod 4.
We have d(v1) = 2t−m = 4bm−1

4
c+4dn

4
e−m = m−4+n+3−m = n−1, for v1 ∈ V (FB)

and d(v) = 2t−m− 1 = 4bm+1
4
c+ 4dn

4
e −m− 1 = m− 4 + n+ 3−m− 1 = n− 2, for any

v ∈ V (FB)− {v1}. Then, FB + K1,n.

Now, we consider any red-blue coloring on the edges of graph K3×t = GR ⊕ GB, such that
GR + K1,m. This implies that ∆(GR) ≤ m− 1. We distinguish the following two cases, to show
that m3(K1,m, K1,n) ≤ t.

Case a. For m ≡ 2 mod 4 and n ≡ 3 mod 4.
δ(GB) ≥ 2t− (m− 1) = 2t−m+ 1 = m− 1 + 2dn

2
e−m+ 1 = n+ 1, since n is odd. Then,

GB ⊇ K1,n.
Case b. For m ≡ 4 mod 4 and n ≡ 1 mod 4.
δ(GB) ≥ 2t− (m−1) = 2t−m+1 = 4bm−1

4
c+4dn

4
e−m+1 = m−4+n+3−m+2 = n.

Therefore, GB ⊇ K1,n.

Case 3. For m ≡ 1 mod 2 and n ≥ 1, let t = m−1
2

+ dn
2
e, for m ≡ 2 mod 4 and n 6= 3 mod 4, let

t = 2bm+1
4
c+ 2bn

4
c+ 1, and for m ≡ 4 mod 4 and n 6= 1 mod 4, let t = 2bm−1

4
c+ 2dn

4
e+ 1.

We consider a red-blue coloring on the edges of graph K3×(t−1) = FR ⊕ FB, such that FR is
a (m− 1)−regular graph. By Handshaking Lemma, it is possible since the sum of the degrees of
the vertices of FR is even. Then, FR + K1,m. We have d(v) = 2(t− 1)− (m− 1). We distinguish
the following three cases, to show that m3(K1,m, K1,n) ≥ t.
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Case a. For m ≡ 1 mod 2 dan n ≥ 1.
d(v) = 2t − m − 1 = m − 1 + 2dn

2
e − m − 1 = 2dn

2
e − 2 < n, for any v in FB. Then,

FB + K1,n.
Case b. For m ≡ 2 mod 4 and n 6= 3 mod 4.
d(v) = 2t−m−1 = 4bm+1

4
c+4bn

4
c+2−m−1 = m−2+4bn

4
c−m+1 = 4bn

4
c−1 ≤ n−1,

for any v in FB. Then, FB + K1,n.
Case c. For m ≡ 4 mod 4 and n 6= 1 mod 4.
d(v) = 2t−m− 1 = 4bm−1

4
c+ 4dn

4
e+ 2−m− 1 = m− 4 + 4dn

4
e−m+ 1 = 4dn

4
e− 3 < n,

for any v in FB. Then, FB + K1,n.

Now, we consider any red-blue coloring on the edges of graph K3×t = GR ⊕ GB, such that
GR + K1,m. This implies that ∆(GR) ≤ m− 1. We distinguish the following three cases, to show
that m3(K1,m, K1,n) ≤ t.

Case a. For m ≡ 1 mod 2 dan n ≥ 1.
δ(GB) ≥ 2t− (m−1) = 2t−m+1 = m−1+2dn

2
e−m+1 = 2dn

2
e ≥ n. Then, GB ⊇ K1,n.

Figure 1. A coloring for m3(K1,3,K1,6) = 4.

For m and n are both even, suppose that d(v) = m− 1, for any v in GR. Then, the sum of the
degrees of the vertices of GR is odd. By Handshaking Lemma, it is a contradiction. Then, there is
at least one vertex v1 in GR such that d(v1) = m− 2. We consider v1 in GB for the following two
cases.

Case b. For m ≡ 2 mod 4 and n 6= 3 mod 4.
d(v1) = 2t−m+ 2 = 4bm+1

4
c+ 4bn

4
c+ 2−m+ 2 = m− 2 + 4bn

4
c−m+ 4 = 4bn

4
c+ 2 ≥ n.

Case c. For m ≡ 4 mod 4 and n 6= 1 mod 4.
d(v1) = 2t−m+ 2 = 4bm−1

4
c+ 4dn

4
e+ 2−m+ 2 = m− 4 + 4dn

4
e −m+ 4 = 4dn

4
e ≥ n.

Therefore, there is a star K1,n in GB, where v1 as the center.
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Figure 2. A coloring for m3(K1,4,K1,n) = 5, (6 ≤ n ≤ 8).

Theorem 2.4. For positive integers m and n, we have

m3(mK1,n, C3) ≥ ndm
2
e+ bm

2
c.

Proof. Let t = ndm
2
e + bm

2
c. We will show that m3(mK1,n, C3) ≥ t. Let A,B and C be three

partite sets in graph K3×(t−1). We consider a red-blue coloring on the edges of graph K3×(t−1) =
FR ⊕ FB such that FB = Kt−1,2(t−1), where the first partite set is A and the second partite set
is B ∪ C. This implies that FR = K2×(t−1), where the partite sets are B and C. If m is even,
then |V (FR)| = 2(t − 1) = 2(ndm

2
e + bm

2
c − 1) = m(n + 1) − 2 < |V (mK1,n)|. Therefore,

FR + mK1,n. If m = 1, then FR = K2×(n−1). It is clear that FR + K1,n. If m ≥ 3 and m is odd,
then |B| = |C| = n(m+1)

2
+ m−3

2
= m−1

2
(n + 1) + n−1

2
. Hence, FR only contains (m − 1)K1,n.

Then, m3(mK1,n, C3) ≥ t.
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